Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(47)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35944428

RESUMO

Off-axis electron holography was used to reveal remote doping in GaAs nanowires occurring duringin situannealing in a transmission electron microscope. Dynamic changes to the electrostatic potential caused by carbon dopant diffusion upon annealing were measured across GaAs nanowires with radial p-p+ core-shell junctions. Electrostatic potential profiles were extracted from holographic phase maps and built-in potentials (Vbi) and depletion layer widths (DLWs) were estimated as function of temperature over 300-873 K. Simulations in absence of remote doping predict a significant increase ofVbiand DLWs with temperature. In contrast, we measured experimentally a nearly constantVbiand a weak increase of DLWs. Moreover, we observed the appearance of a depression in the potential profile of the core upon annealing. We attribute these deviations from the predicted behavior to carbon diffusion from the shell to the core through the nanowire sidewalls, i.e. to remote doping, becoming significant at 673 K. The DLW in the p and p+ regions are in the 10-30 nm range.

2.
Adv Sci (Weinh) ; 10(36): e2304905, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897312

RESUMO

The asymmetrical growth of a single-wall carbon nanotube (SWCNT) by introducing a change of a local atomic structure, is usually inevitable and supposed to have a profound effect on the chirality control and property tailor. However, the breaking of the symmetry during SWCNT growth remains unexplored and its origins at the atomic-scale are elusive. Here, environmental transmission electron microscopy is used to capture the process of breaking the symmetry of a growing SWCNT from a sub-2-nm platinum catalyst nanoparticle in real-time, demonstrating that topological defects formed on the side of a SWCNT can serve as a buffer for stress release and inherently break its axis-symmetrical growth. Atomic-level details reveal the importance of the tube-catalyst interface and how the atom rearrangement of the solid-state platinum catalyst around the interface influences the final tubular structure. The active sites responsible for trapping carbon dimers and providing enough driving force for carbon incorporation and asymmetric growth are shown to be low-coordination step edges, as confirmed by theoretical simulations.

3.
Membranes (Basel) ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877898

RESUMO

Nowadays, proteins and polysaccharides play a fundamental role in the manufacturing of biocompatible materials applied in food packaging. The resulting films have, however, limits associated with the resistance to mechanical stress; therefore, it is important to reinforce the initial mixture with additives that promote the development of stronger molecular links. Carbon dots (CDs) are excellent candidates for this purpose due to the presence of surface functional groups that determine the formation of numerous intramolecular bonds between the charged biopolymers. The present research aims to evaluate the effect of CDs on the mechanical properties of biopolymer films obtained from sodium caseinate (CAS), high methoxyl pectin (HMP) and glycerol used as plasticizers. Green carbon dots (gCDs) were obtained from natural organic sources by green synthesis. The effects of gCDs on the flow behavior and viscoelastic properties of mixed biopolymer dispersions and the thermophysical properties of the corresponded films were evaluated by steady and unsteady shear rheological measurements and differential scanning calorimetry (DSC) tests, respectively. The dynamic mechanical measurements were realized taking into account the parameters of temperature and relative humidity. The results indicate a significant change in the viscosity of the protein-polysaccharide dispersions and the thermomechanical properties of the corresponding film samples reinforced with higher amounts of gCDs.

4.
Nanoscale ; 11(24): 11885-11891, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31184684

RESUMO

Oxide supported metal nanoparticles play an important role in heterogeneous catalysis. However, understanding the metal/oxide interface and their evolution under reaction conditions remains challenging. Herein, we investigate the interface between Au nanoparticles and a CeO2 substrate by environmental transmission electron microscopy with atomic resolution. We find that the Au nanoparticles have two preferential epitaxial relationships with the substrate, i.e. Type I (111)[-110]CeO2//(111)[-110]Au and Type II (111)[-110]CeO2//(111)[1-10]Au orientation relationships, where Type I is preferred. In situ observations in the presence of O2 show that the gas can stimulate the supported Au nanoparticles to transform between these two orientations even at room temperature. Moreover, when increasing the temperature to 973 K, the transformation of an Au nanoparticle between the two orientation states and a non-crystalline state in the presence of O2 is also observed. DFT calculations of the binding between Au and CeO2 in the two relationships are strongly influenced by the presence of oxygen vacancies. For a given position of a vacancy, there is a significant energy difference between the energy of the two types. However, for some positions, Type I is preferred, and for others, Type II, but the most favourable position of the vacancy for the two types has a very similar energy. This is consistent with the observation of both types of adhesion.

5.
ACS Appl Mater Interfaces ; 9(42): 37374-37385, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28967257

RESUMO

Efficient adhesion of gold thin films on dielectric or semiconductor substrates is essential in applications and research within plasmonics, metamaterials, 2D materials, and nanoelectronics. As a consequence of the relentless downscaling in nanoscience and technology, the thicknesses of adhesion layer and overlayer have reached tens of nanometers, and it is unclear if our current understanding is sufficient. In this report, we investigated how Cr and Ti adhesion layers influence the nanostructure of 2-20 nm thin Au films by means of high-resolution electron microscopy, complemented with atomic force microscopy and X-ray photoelectron spectroscopy. Pure Au films were compared to Ti/Au and Cr/Au bilayer systems. Both Ti and Cr had a striking impact on grain size and crystal orientation of the Au overlayer, which we interpret as the adhesion layer-enhanced wetting of Au and the formation of chemical bonds between the layers. Ti formed a uniform layer under the Au overlayer. Cr interdiffused with the Au layer forming a Cr-Au alloy. The crystal orientation of the Au layers was mainly [111] for all thin-film systems. The results showed that both adhesion layers were partially oxidized, and oxidation sources were scrutinized and found. A difference in bilayer electrical resistivity between Ti/Au and Cr/Au systems was measured and compared. On the basis of these results, a revised and more detailed adhesion layer model for both Ti/Au and Cr/Au systems was proposed. Finally, the implications of the results were analyzed, and recommendations for the selection of adhesion layers for nano-optics and nanoelectronics applications are presented.

6.
Microscopy (Oxf) ; 63(5): 397-401, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039076

RESUMO

Metallic alloy nanoparticles (NPs) are synthesized in situ in an environmental transmission electron microscope. Atomic level characterization of the formed alloy NPs is carried out at synthesis conditions by use of high-resolution transmission electron microscopy, electron diffraction and electron energy-loss spectroscopy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa