Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Biol ; 15(12): e2002690, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29283992

RESUMO

Response to antidepressant treatment in major depressive disorder (MDD) cannot be predicted currently, leading to uncertainty in medication selection, increasing costs, and prolonged suffering for many patients. Despite tremendous efforts in identifying response-associated genes in large genome-wide association studies, the results have been fairly modest, underlining the need to establish conceptually novel strategies. For the identification of transcriptome signatures that can distinguish between treatment responders and nonresponders, we herein submit a novel animal experimental approach focusing on extreme phenotypes. We utilized the large variance in response to antidepressant treatment occurring in DBA/2J mice, enabling sample stratification into subpopulations of good and poor treatment responders to delineate response-associated signature transcript profiles in peripheral blood samples. As a proof of concept, we translated our murine data to the transcriptome data of a clinically relevant human cohort. A cluster of 259 differentially regulated genes was identified when peripheral transcriptome profiles of good and poor treatment responders were compared in the murine model. Differences in expression profiles from baseline to week 12 of the human orthologues selected on the basis of the murine transcript signature allowed prediction of response status with an accuracy of 76% in the patient population. Finally, we show that glucocorticoid receptor (GR)-regulated genes are significantly enriched in this cluster of antidepressant-response genes. Our findings point to the involvement of GR sensitivity as a potential key mechanism shaping response to antidepressant treatment and support the hypothesis that antidepressants could stimulate resilience-promoting molecular mechanisms. Our data highlight the suitability of an appropriate animal experimental approach for the discovery of treatment response-associated pathways across species.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Paroxetina/farmacologia , Receptores de Glucocorticoides/fisiologia , Animais , Antidepressivos/uso terapêutico , Biomarcadores Farmacológicos , Encéfalo/metabolismo , Corticosterona/sangue , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos DBA , Família Multigênica , Paroxetina/metabolismo , Paroxetina/uso terapêutico , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
2.
Am J Physiol Endocrinol Metab ; 312(3): E183-E189, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049625

RESUMO

It has been demonstrated that the neuropeptide oxytocin (OT) attenuates oxidative stress and inflammation in macrophages. In the current study, we examined the role of inflammation on the expression of the oxytocin receptor (OXTR). We hypothesized that OXTR expression is increased during the inflammation through a nuclear factor-κB (NF-κB)-mediated pathway, thus responding as an acute-phase protein. Inflammation was induced by treating macrophages (human primary, THP-1, and murine) with lipopolysaccharide (LPS) and monitored by expression of IL-6. Expression of OXTR and vasopressin receptors was assessed by qPCR, and OXTR expression was confirmed by immunoblotting. Inflammation upregulated OXTR transcription 10- to 250-fold relative to control in THP-1 and human primary macrophages and increased OXTR protein expression. In contrast, vasopressin receptor-2 mRNA expression was reduced following LPS treatment. Blocking NF-κB activation prevented the increase in OXTR transcription. OT treatment of control cells and LPS-treated cells increased ERK1/2 phosphorylation, demonstrating activation of the OXTR/Gαq/11 signaling pathway. OT activation of OXTR reduced secretion of IL-6 in LPS-activated macrophages. Collectively, these findings suggest that OXTR is an acute-phase protein and that its increased expression is regulated by NF-κB and functions to attenuate cellular inflammatory responses in macrophages.


Assuntos
Macrófagos/metabolismo , Receptores de Ocitocina/genética , Animais , Western Blotting , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Ocitócicos/farmacologia , Ocitocina/farmacologia , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Ocitocina/efeitos dos fármacos , Receptores de Vasopressinas/efeitos dos fármacos , Receptores de Vasopressinas/genética
3.
J Neurosci ; 35(24): 9007-16, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26085626

RESUMO

Anxiety-related psychiatric disorders represent one of the largest health burdens worldwide. Single nucleotide polymorphisms of the FK506 binding protein 51 (FKBP51) gene have been repeatedly associated with anxiety-related disorders and stress sensitivity. Given the intimate relationship of stress and anxiety, we hypothesized that amygdala FKBP51 may mediate anxiety-related behaviors. Mimicking the stress effect by specifically overexpressing FKBP51 in the basolateral amygdala (BLA) or central amygdala resulted in increased anxiety-related behavior, respectively. In contrast, application of a highly selective FKBP51 point mutant antagonist, following FKBP51(mut) BLA-overexpression, reduced the anxiogenic phenotype. We subsequently tested a novel FKBP51 antagonist, SAFit2, in wild-type mice via BLA microinjections, which reduced anxiety-related behavior. Remarkably, the same effect was observed following peripheral administration of SAFit2. To our knowledge, this is the first in vivo study using a specific FKBP51 antagonist, thereby unraveling the role of FKBP51 and its potential as a novel drug target for the improved treatment of anxiety-related disorders.


Assuntos
Ansiolíticos/administração & dosagem , Ansiedade/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/biossíntese , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções/métodos , Fatores de Risco
4.
J Neurosci ; 33(9): 3857-64, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447597

RESUMO

In recent years, the glutamatergic system has been implicated in the development and treatment of psychiatric disorders. Glutamate signaling is processed by different receptors, including metabotropic glutamate receptors (mGluRs), which in turn interact with the scaffolding protein Homer1 to modulate downstream Ca(2+) signaling. Stress is a major risk factor for the incidence of psychiatric diseases, yet acute stress episodes may have diverging effects on individuals. Cognitive impairments have often been shown to occur after episodes of stress, however the specific role of mGluR5/Homer1 signaling in the interaction of stress and cognition has not yet been elucidated. In this study we show that a single episode of social defeat stress is sufficient to specifically induce cognitive impairments in mice 8 h after the stressor without affecting the animals' locomotion or anxiety levels. We also demonstrate that Homer1b/c levels as well as mGluR5/Homer1b/c interactions in the dorsal hippocampus are reduced up to 8 h after stress. Blockade of mGluR5 during the occurrence of social stress was able to rescue the cognitive impairments. In addition, a specific overexpression of Homer1b/c in the dorsal hippocampus also reversed the behavioral phenotype, indicating that both mGluR5 and Homer1b/c play a crucial role in the mediation of the stress effects. In summary, we could demonstrate that stress induces a cognitive deficit that is likely mediated by mGluR5/Homer1 signaling in the hippocampus. These findings help to reveal the underlying effects of cognitive impairments in patients suffering from stress-related psychiatric disorders.


Assuntos
Proteínas de Transporte/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Hipocampo/metabolismo , Estresse Psicológico/complicações , Análise de Variância , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Transtornos Cognitivos/terapia , Dexametasona/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Terapia Genética , Vetores Genéticos/genética , Glucocorticoides/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/efeitos dos fármacos , Proteínas de Arcabouço Homer , Imunoprecipitação , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Reconhecimento Psicológico , Recompensa , Transdução de Sinais/fisiologia , Percepção Espacial/efeitos dos fármacos , Tiazóis/farmacologia
5.
PLoS Med ; 11(11): e1001755, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25386878

RESUMO

BACKGROUND: FK506 binding protein 51 (FKBP51) is an Hsp90 co-chaperone and regulator of the glucocorticoid receptor, and consequently of stress physiology. Clinical studies suggest a genetic link between FKBP51 and antidepressant response in mood disorders; however, the underlying mechanisms remain elusive. The objective of this study was to elucidate the role of FKBP51 in the actions of antidepressants, with a particular focus on pathways of autophagy. METHODS AND FINDINGS: Established cell lines, primary neural cells, human blood cells of healthy individuals and patients with depression, and mice were treated with antidepressants. Mice were tested for several neuroendocrine and behavioral parameters. Protein interactions and autophagic pathway activity were mainly evaluated by co-immunoprecipitation and Western blots. We first show that the effects of acute antidepressant treatment on behavior are abolished in FKBP51 knockout (51KO) mice. Autophagic markers, such as the autophagy initiator Beclin1, were increased following acute antidepressant treatment in brains from wild-type, but not 51KO, animals. FKBP51 binds to Beclin1, changes decisive protein interactions and phosphorylation of Beclin1, and triggers autophagic pathways. Antidepressants and FKBP51 exhibited synergistic effects on these pathways. Using chronic social defeat as a depression-relevant stress model in combination with chronic paroxetine (PAR) treatment revealed that the stress response, as well as the effects of antidepressants on behavior and autophagic markers, depends on FKBP51. In human blood cells of healthy individuals, FKBP51 levels correlated with the potential of antidepressants to induce autophagic pathways. Importantly, the clinical antidepressant response of patients with depression (n = 51) could be predicted by the antidepressant response of autophagic markers in patient-derived peripheral blood lymphocytes cultivated and treated ex vivo (Beclin1/amitriptyline: r = 0.572, p = 0.003; Beclin1/PAR: r = 0.569, p = 0.004; Beclin1/fluoxetine: r = 0.454, p = 0.026; pAkt/amitriptyline: r =  -0.416, p = 0.006; pAkt/PAR: r =  -0.355, p = 0.021; LC3B-II/PAR: r = 0.453, p = 0.02), as well as by the lymphocytic expression levels of FKBP51 (r = 0.631, p<0.0001), pAkt (r =  -0.515, p = 0.003), and Beclin1 (r = 0.521, p = 0.002) at admission. Limitations of the study include the use of male mice only and the relatively low number of patients for protein analyses. CONCLUSIONS: To our knowledge, these findings provide the first evidence for the molecular mechanism of FKBP51 in priming autophagic pathways; this process is linked to the potency of at least some antidepressants. These newly discovered functions of FKBP51 also provide novel predictive markers for treatment outcome, consistent with physiological and potential clinical relevance. Please see later in the article for the Editors' Summary.


Assuntos
Antidepressivos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Depressão/genética , Transtorno Depressivo/genética , Estresse Psicológico/genética , Proteínas de Ligação a Tacrolimo/genética , Adulto , Amitriptilina/farmacologia , Amitriptilina/uso terapêutico , Animais , Antidepressivos/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Células Sanguíneas/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Paroxetina/farmacologia , Paroxetina/uso terapêutico , Ratos Sprague-Dawley , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Adulto Jovem
6.
Neurobiol Dis ; 42(3): 300-10, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21296667

RESUMO

Chronic stress evokes profound structural and molecular changes in the hippocampus, which may underlie spatial memory deficits. Corticotropin-releasing hormone (CRH) and CRH receptor 1 (CRHR1) mediate some of the rapid effects of stress on dendritic spine morphology and modulate learning and memory, thus providing a potential molecular basis for impaired synaptic plasticity and spatial memory by repeated stress exposure. Using adult male mice with CRHR1 conditionally inactivated in the forebrain regions, we investigated the role of CRH-CRHR1 signaling in the effects of chronic social defeat stress on spatial memory, the dendritic morphology of hippocampal CA3 pyramidal neurons, and the hippocampal expression of nectin-3, a synaptic cell adhesion molecule important in synaptic remodeling. In chronically stressed wild-type mice, spatial memory was disrupted, and the complexity of apical dendrites of CA3 neurons reduced. In contrast, stressed mice with forebrain CRHR1 deficiency exhibited normal dendritic morphology of CA3 neurons and mild impairments in spatial memory. Additionally, we showed that the expression of nectin-3 in the CA3 area was regulated by chronic stress in a CRHR1-dependent fashion and associated with spatial memory and dendritic complexity. Moreover, forebrain CRHR1 deficiency prevented the down-regulation of hippocampal glucocorticoid receptor expression by chronic stress but induced increased body weight gain during persistent stress exposure. These findings underscore the important role of forebrain CRH-CRHR1 signaling in modulating chronic stress-induced cognitive, structural and molecular adaptations, with implications for stress-related psychiatric disorders.


Assuntos
Dendritos/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Prosencéfalo/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Estresse Psicológico/metabolismo , Análise de Variância , Animais , Western Blotting , Peso Corporal/genética , Moléculas de Adesão Celular/metabolismo , Dominação-Subordinação , Hibridização In Situ , Masculino , Camundongos , Camundongos Transgênicos , Nectinas , Neurônios/metabolismo , Estresse Psicológico/genética
7.
NPJ Schizophr ; 2: 16022, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27430010

RESUMO

Alterations of postsynaptic density (PSD)95-complex proteins in schizophrenia ostensibly induce deficits in synaptic plasticity, the molecular process underlying cognitive functions. Although some PSD95-complex proteins have been previously examined in the hippocampus in schizophrenia, the status of other equally important molecules is unclear. This is especially true in the cornu ammonis (CA)1 hippocampal subfield, a region that is critically involved in the pathophysiology of the illness. We thus performed a quantitative immunoblot experiment to examine PSD95 and several of its associated proteins in the CA1 region, using post mortem brain samples derived from schizophrenia subjects with age-, sex-, and post mortem interval-matched controls (n=20/group). Our results indicate a substantial reduction in PSD95 protein expression (-61.8%). Further analysis showed additional alterations to the scaffold protein Homer1 (Homer1a: +42.9%, Homer1b/c: -24.6%), with a twofold reduction in the ratio of Homer1b/c:Homer1a isoforms (P=0.011). Metabotropic glutamate receptor 1 (mGluR1) protein levels were significantly reduced (-32.7%), and Preso, a protein that supports interactions between Homer1 or PSD95 with mGluR1, was elevated (+83.3%). Significant reduction in synaptophysin (-27.8%) was also detected, which is a validated marker of synaptic density. These findings support the presence of extensive molecular abnormalities to PSD95 and several of its associated proteins in the CA1 region in schizophrenia, offering a small but significant step toward understanding how proteins in the PSD are altered in the schizophrenia brain, and their relevance to overall hippocampal and cognitive dysfunction in the illness.

8.
Neuropsychopharmacology ; 40(5): 1222-33, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25409593

RESUMO

Stress-induced psychiatric disorders, such as depression, have recently been linked to changes in glutamate transmission in the central nervous system. Glutamate signaling is mediated by a range of receptors, including metabotropic glutamate receptors (mGluRs). In particular, mGluR subtype 5 (mGluR5) is highly implicated in stress-induced psychopathology. The major scaffold protein Homer1 critically interacts with mGluR5 and has also been linked to several psychopathologies. Yet, the specific role of Homer1 in this context remains poorly understood. We used chronic social defeat stress as an established animal model of depression and investigated changes in transcription of Homer1a and Homer1b/c isoforms and functional coupling of Homer1 to mGluR5. Next, we investigated the consequences of Homer1 deletion, overexpression of Homer1a, and chronic administration of the mGluR5 inverse agonist CTEP (2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine) on the effects of chronic stress. In mice exposed to chronic stress, Homer1b/c, but not Homer1a, mRNA was upregulated and, accordingly, Homer1/mGluR5 coupling was disrupted. We found a marked hyperactivity behavior as well as a dysregulated hypothalamic-pituitary-adrenal axis activity in chronically stressed Homer1 knockout (KO) mice. Chronic administration of the selective and orally bioavailable mGluR5 inverse agonist, CTEP, was able to recover behavioral alterations induced by chronic stress, whereas overexpression of Homer1a in the hippocampus led to an increased vulnerability to chronic stress, reflected in an increased physiological response to stress as well as enhanced depression-like behavior. Overall, our results implicate the glutamatergic system in the emergence of stress-induced psychiatric disorders, and support the Homer1/mGluR5 complex as a target for the development of novel antidepressant agents.


Assuntos
Proteínas de Transporte/metabolismo , Transtorno Depressivo/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Resiliência Psicológica , Estresse Psicológico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Transporte/genética , Doença Crônica , Modelos Animais de Doenças , Dominação-Subordinação , Agonismo Inverso de Drogas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Arcabouço Homer , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Resiliência Psicológica/efeitos dos fármacos
9.
Neuron ; 86(5): 1189-202, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26050039

RESUMO

Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain.


Assuntos
Encéfalo/fisiologia , Variação Genética/genética , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , Estresse Psicológico/genética , Transcriptoma/genética , Animais , Estudos de Coortes , Previsões , Redes Reguladoras de Genes/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Estresse Psicológico/diagnóstico
10.
J Endocrinol ; 222(1): 15-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24781256

RESUMO

While it is known that stress promotes obesity, the effects of stress within an obesogenic context are not so clear and molecular targets at the interface remain elusive. The FK506-binding protein 51 (FKBP51, gene: Fkbp5) has been identified as a target gene implicated in the development of stress-related psychiatric disorders and is a possible candidate for involvement in stress and metabolic regulation. The aims of the current study are to investigate the interaction between chronic stress and an obesogenic context and to additionally examine whether FKBP51 is involved in this interaction. For this purpose, male C57BL/6 mice were exposed to a high-fat diet for 8 weeks before being challenged with chronic social defeat stress. Herein, we demonstrate that chronic stress induces hypophagia and weight loss, ultimately improving features arising from an obesogenic context, including glucose tolerance and levels of insulin and leptin. We show that Fkbp5 expression is responsive to diet and stress in the hypothalamus and hippocampus respectively. Furthermore, under basal conditions, higher levels of hypothalamic Fkbp5 expression were related to increased body weight gain. Our data indicate that Fkbp5 may represent a novel target in metabolic regulation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Obesidade/fisiopatologia , Estresse Psicológico/fisiopatologia , Proteínas de Ligação a Tacrolimo/fisiologia , Animais , Corticosterona/sangue , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Glucose/metabolismo , Hipocampo/fisiologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso/fisiologia
11.
PLoS One ; 9(4): e95796, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759731

RESUMO

Psychiatric disorders such as depressive disorders and posttraumatic stress disorder are a major disease burden worldwide and have a higher incidence in women than in men. However, the underlying mechanism responsible for the sex-dependent differences is not fully understood. Besides environmental factors such as traumatic life events or chronic stress, genetic variants contribute to the development of such diseases. For instance, variations in the gene encoding the FK506 binding protein 51 (FKBP51) have been repeatedly associated with mood and anxiety. FKBP51 is a negative regulator of the glucocorticoid receptor and thereby of the hypothalamic-pituitary-adrenal axis that also interacts with other steroid hormone receptors such as the progesterone and androgen receptors. Thus, the predisposition of women to psychiatric disorders and the interaction of female hormones with FKBP51 and the glucocorticoid receptor implicate a possible difference in the regulation of the hypothalamic-pituitary-adrenal axis in female FKBP51 knockout (51KO) mice. Therefore, we investigated neuroendocrine, behavioural and physiological alterations relevant to mood disorders in female 51KO mice. Female 51KOs and wild type littermates were subjected to various behavioural tests, including the open field, elevated plus maze and forced swim test. The neuroendocrine profile was investigated under basal conditions and in response to an acute stressor. Furthermore, we analysed the mRNA expression levels of the glucocorticoid receptor and corticotrophin release hormone in different brain regions. Overall, female 51KO mice did not display any overt behavioural phenotype under basal conditions, but showed a reduced basal hypothalamic-pituitary-adrenal axis activity, a blunted response to, and an enhanced recovery from, acute stress. These characteristics strongly overlap with previous studies in male 51KO mice indicating that FKBP51 shapes the behavioural and neuroendocrine phenotype independent of the sex of the individual.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/genética , Ciclo Estral/genética , Ciclo Estral/fisiologia , Feminino , Hipocampo/metabolismo , Hibridização In Situ , Camundongos , Camundongos Knockout , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de Glucocorticoides/genética , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Proteínas de Ligação a Tacrolimo/genética
12.
PLoS One ; 9(1): e85975, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465821

RESUMO

Loss of motivation and learning impairments are commonly accepted core symptoms of psychiatric disorders such as depression and schizophrenia. Reward-motivated learning is dependent on the hippocampal formation but the molecular mechanisms that lead to functional incentive motivation in this brain region are still largely unknown. Recent evidence implicates neurotransmission via metabotropic glutamate receptors and Homer1, their interaction partner in the postsynaptic density, in drug addiction and motivational learning. As previous reports mainly focused on the prefrontal cortex and the nucleus accumbens, we now investigated the role of hippocampal Homer1 in operant reward learning in the present study. We therefore tested either Homer1 knockout mice or mice that overexpress Homer1 in the hippocampus in an operant conditioning paradigm. Our results show that deletion of Homer1 leads to a diverging phenotype that either displays an inability to perform the task or outstanding hyperactivity in both learning and motivational sessions. Due to the apparent bimodal distribution of this phenotype, the overall effect of Homer1 deletion in this paradigm is not significantly altered. Overexpression of hippocampal Homer1 did not lead to a significantly altered learning performance in any stage of the testing paradigm, yet may subtly contribute to emerging motivational deficits. Our results indicate an involvement of Homer1-mediated signaling in the hippocampus in motivation-based learning tasks and encourage further investigations regarding the specific molecular underpinnings of the phenotypes observed in this study. We also suggest to cautiously interpret the results of this and other studies regarding the phenotype following Homer1 manipulations in animals, since their behavioral phenotype appears to be highly diverse. Future studies would benefit from larger group sizes that would allow splitting the experimental groups in responders and non-responders.


Assuntos
Comportamento Animal , Proteínas de Transporte/metabolismo , Condicionamento Operante , Hipocampo/metabolismo , Motivação , Animais , Proteínas de Arcabouço Homer , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise e Desempenho de Tarefas
13.
Eur Neuropsychopharmacol ; 24(6): 907-18, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24589292

RESUMO

Chronic stress is one of the predominant environmental risk factors for a number of psychiatric disorders, particularly for major depression. Different hypotheses have been formulated to address the interaction between early and adult chronic stress in psychiatric disease vulnerability. The match/mismatch hypothesis of psychiatric disease states that the early life environment shapes coping strategies in a manner that enables individuals to optimally face similar environments later in life. We tested this hypothesis in female Balb/c mice that underwent either stress or enrichment early in life and were in adulthood further subdivided in single or group housed, in order to provide aversive or positive adult environments, respectively. We studied the effects of the environmental manipulation on anxiety-like, depressive-like and sociability behaviors and gene expression profiles. We show that continuous exposure to adverse environments (matched condition) is not necessarily resulting in an opposite phenotype compared to a continuous supportive environment (matched condition). Rather, animals with mismatched environmental conditions behaved differently from animals with matched environments on anxious, social and depressive like phenotypes. These results further support the match/mismatch hypothesis and illustrate how mild or moderate aversive conditions during development can shape an individual to be optimally adapted to similar conditions later in life.


Assuntos
Transtornos de Ansiedade/etiologia , Transtorno Depressivo/etiologia , Meio Ambiente , Modelos Psicológicos , Comportamento Social , Estresse Psicológico/complicações , Adaptação Psicológica , Glândulas Suprarrenais/fisiopatologia , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/psicologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/sangue , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/psicologia , Modelos Animais de Doenças , Ciclo Estral/fisiologia , Feminino , Hipocampo/fisiopatologia , Abrigo para Animais , Camundongos Endogâmicos BALB C , Testes Neuropsicológicos , Fenótipo , Isolamento Social/psicologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Timo/fisiopatologia
14.
Psychoneuroendocrinology ; 48: 98-110, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24998413

RESUMO

Understanding the molecular mechanisms by which stress is translated into changes in complex behavior may help to identify novel treatment strategies for stress-associated psychiatric disorders. The tumor suppressor gene down-regulated in renal cell carcinoma 1 (DRR1) was recently characterized as a new molecular link between stress, synaptic efficacy and behavioral performance, most likely through its ability to modulate actin dynamics. The lateral septum is one of the brain regions prominently involved in the stress response. This brain region features high DRR1 expression in adult mice, even under basal conditions. We therefore aimed to characterize and dissect the functional role of septal DRR1 in modulating complex behavior. DRR1 protein expression was shown to be expressed in both neurons and astrocytes of the lateral septum of adult mice. Septal DRR1 mRNA expression increased after acute defeat stress and glucocorticoid receptor activation. To mimic the stress-induced DRR1 increase in the lateral septum of mice, we performed adenovirus-mediated region-specific overexpression of DRR1 and characterized the behavior of these mice. Overexpression of DRR1 in the septal region increased sociability, but did not change cognitive, anxiety-like or anhedonic behavior. The observed changes in social behavior did not involve alterations of the expression of vasopressin or oxytocin receptors, the canonical social neuropeptidergic circuits of the lateral septum. In summary, our data suggest that the stress-induced increase of DRR1 expression in the lateral septum could be a protective mechanism to buffer or counterbalance negative consequences of stress exposure on social behavior.


Assuntos
Comportamento Animal , Transtornos Mentais/genética , Comportamento Social , Proteínas Supressoras de Tumor/fisiologia , Actinas/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia
15.
Endocrinology ; 155(7): 2500-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24773341

RESUMO

Chronic stress is a risk factor for psychiatric disorders but does not necessarily lead to uniform long-term effects on mental health, suggesting modulating factors such as genetic predispositions. Here we address the question whether natural genetic variations in the mouse CRH receptor 1 (Crhr1) locus modulate the effects of adolescent chronic social stress (ACSS) on long-term stress hormone dysregulation in outbred CD1 mice, which allows a better understanding of the currently reported genes × environment interactions of early trauma and CRHR1 in humans. We identified 2 main haplotype variants in the mouse Crhr1 locus that modulate the long-term effects of ACSS on basal hypothalamic-pituitary-adrenal axis activity. This effect is likely mediated by higher levels of CRHR1, because Crhr1 mRNA expression and CRHR1 binding were enhanced in risk haplotype carriers. Furthermore, a CRHR1 receptor antagonist normalized these long-term effects. Deep sequencing of the Crhr1 locus in CD1 mice revealed a large number of linked single-nucleotide polymorphisms with some located in important regulatory regions, similar to the location of human CRHR1 variants implicated in modulating gene × stress exposure interactions. Our data support that the described gene × stress exposure interaction in this animal model is based on naturally occurring genetic variations in the Crhr1 gene associated with enhanced CRHR1-mediated signaling. Our results suggest that patients with a specific genetic predisposition in the CRHR1 gene together with an exposure to chronic stress may benefit from a treatment selectively antagonizing CRHR1 hyperactivity.


Assuntos
Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Receptores de Hormônio Liberador da Corticotropina/genética , Estresse Psicológico/genética , Animais , Comportamento Animal/efeitos dos fármacos , Ligação Competitiva , Corticosterona/sangue , Feminino , Expressão Gênica , Frequência do Gene , Interação Gene-Ambiente , Genótipo , Haplótipos , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Hibridização In Situ , Masculino , Camundongos , Hipófise/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Pirazóis/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais/genética , Triazinas/farmacologia
16.
Nat Neurosci ; 16(6): 706-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644483

RESUMO

Stress impairs cognition via corticotropin-releasing hormone receptor 1 (CRHR1), but the molecular link between abnormal CRHR1 signaling and stress-induced cognitive impairments remains unclear. We investigated whether the cell adhesion molecule nectin-3 is required for the effects of CRHR1 on cognition and structural remodeling after early-life stress exposure. Postnatally stressed adult mice had decreased hippocampal nectin-3 levels, which could be attenuated by CRHR1 inactivation and mimicked by corticotropin-releasing hormone (CRH) overexpression in forebrain neurons. Acute stress dynamically reduced hippocampal nectin-3 levels, which involved CRH-CRHR1, but not glucocorticoid receptor, signaling. Suppression of hippocampal nectin-3 caused spatial memory deficits and dendritic spine loss, whereas enhancing hippocampal nectin-3 expression rescued the detrimental effects of early-life stress on memory and spine density in adulthood. Our findings suggest that hippocampal nectin-3 is necessary for the effects of stress on memory and structural plasticity and indicate that the CRH-CRHR1 system interacts with the nectin-afadin complex to mediate such effects.


Assuntos
Moléculas de Adesão Celular/fisiologia , Espinhas Dendríticas/metabolismo , Hipocampo/fisiopatologia , Memória/fisiologia , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Transdução de Sinais/fisiologia , Estresse Psicológico , Animais , Comportamento Animal/fisiologia , Moléculas de Adesão Celular/antagonistas & inibidores , Hormônio Liberador da Corticotropina/fisiologia , Espinhas Dendríticas/patologia , Regulação para Baixo/genética , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nectinas , Prosencéfalo/patologia , Prosencéfalo/fisiologia , Transdução de Sinais/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Regulação para Cima/genética
17.
Neuropsychopharmacology ; 37(13): 2797-808, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22871917

RESUMO

Various clinical studies have identified FK506-binding protein 51 (FKBP51) as a target gene involved in the development of psychiatric disorders such as depression. Furthermore, FKBP51 has been shown to affect glucocorticoid receptor signaling by sensitivity modulation and it is implicated in stress reactivity as well as in molecular mechanisms of stress vulnerability and resilience. We investigated the physiological, behavioral, and neuroendocrine parameters in an established chronic stress model both directly after stress and after a recovery period of 3 weeks and also studied the efficacy of paroxetine in this model. We then examined FKBP51 mRNA levels in the dorsal and ventral part of the hippocampus and correlated the expression to behavioral and endocrine parameters. We show robust chronic stress effects in physiological, behavioral, and neuroendocrine parameters, which were only slightly affected by paroxetine treatment. On the contrary, paroxetine led to a disruption of the neuroendocrine system. FKBP51 expression was significantly increased directly after the stress period and correlated with behavioral and neuroendocrine parameters. Taken together, we were able to further elucidate the role of FKBP51 in the mechanisms of stress resilience and vulnerability, especially with respect to behavioral and neuroendocrine parameters. These findings strongly support the concept of FKBP51 as a marker for glucocorticoid receptor sensitivity and its involvement in the development of psychiatric disorders.


Assuntos
Paroxetina/uso terapêutico , Comportamento Social , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Antidepressivos de Segunda Geração/uso terapêutico , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/psicologia , Resultado do Tratamento
18.
Neuropharmacology ; 62(1): 332-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21839098

RESUMO

Chronic stress is increasingly considered to be a main risk factor for the development of a variety of psychiatric diseases such as depression. This is further supported by an impaired negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis, which has been observed in the majority of depressed patients. The effects of glucocorticoids, the main hormonal endpoint of the HPA axis, are mediated via the glucocorticoid receptor (GR) and the mineralocorticoid receptor. The FK506-binding protein 51 (FKBP5), a co-chaperone of the Hsp90 and component of the chaperone-receptor heterocomplex, has been shown to reduce ligand sensitivity of the GR. This study aimed to investigate the function of FKBP5 as a possible mediator of the stress response system and its potential role in the development of stress-related diseases. Therefore, we assessed whether mice lacking the gene encoding FKBP5 (51KO mice) were less vulnerable to the adverse effects of three weeks of chronic social defeat stress. Mice were subsequently analyzed with regards to physiological, neuroendocrine, behavioral and mRNA expression alterations. Our results show a less vulnerable phenotype of 51KO mice with respect to physiological and neuroendocrine parameters compared to wild-type animals. 51KO mice demonstrated lower adrenal weights and basal corticosterone levels, a diminished response to a novel acute stimulus and an enhanced recovery, as well as more active stress-coping behavior. These results suggest an enhanced negative glucocorticoid feedback within the HPA axis of 51KO mice, possibly modulated by an increased sensitivity of the GR. This article is part of a Special Issue entitled 'Anxiety and Depression'.


Assuntos
Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/fisiopatologia , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Estresse Psicológico , Proteínas de Ligação a Tacrolimo/metabolismo , Análise de Variância , Animais , Corticosterona/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSP90/metabolismo , Locomoção/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Natação/psicologia , Proteínas de Ligação a Tacrolimo/deficiência
19.
Psychoneuroendocrinology ; 37(12): 2009-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22641006

RESUMO

Aversive life events represent one of the main risk factors for the development of many psychiatric diseases, but the interplay between environmental factors and genetic predispositions is still poorly understood. One major finding in many depressed patients is an impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis. The negative feedback loop of the HPA axis is mediated via the glucocorticoid receptor (GR) and the mineralocorticoid receptor. The co-chaperones FK506-binding protein 51 (FKBP51) and FK506-binding protein 52 (FKBP52) are components of the heat shock protein 90-receptor-heterocomplex and are functionally divergent regulators of both receptors. Here, we characterized heterozygous Fkbp52 knockout (Fkbp52(+/-)) mice under basal or chronic social defeat stress (CSDS) conditions with regard to physiological, neuroendocrine, behavioral and mRNA expression alterations. Fkbp52(+/-) mice displayed symptoms of increased stress sensitivity in a subset of behavioral and neuroendocrine parameters. These included increased anxiety-related behavior in the elevated plus-maze and an enhanced neuroendocrine response to a forced swim test (FST), possibly mediated by reduced GR sensitivity. At the same time, Fkbp52(+/-) mice also demonstrated signs of stress resilience in other behavioral and neuroendocrine aspects, such as reduced basal corticosterone levels and more active stress-coping behavior in the FST following CSDS. These contrasting results are in line with previous reports showing that FKBP52 is not involved in all branches of GR signaling, but rather acts in a gene-specific manner to regulate GR transcriptional activation.


Assuntos
Comportamento Animal/fisiologia , Corticosterona/metabolismo , Heterozigoto , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/fisiologia , Animais , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Estresse Psicológico/sangue , Proteínas de Ligação a Tacrolimo/biossíntese , Proteínas de Ligação a Tacrolimo/metabolismo , Vasopressinas/metabolismo
20.
Psychoneuroendocrinology ; 36(4): 579-87, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20940090

RESUMO

The incidence of chronic stress is frequently related to the development of psychiatric disorders like depression. The hypothalamic-pituitary-adrenal (HPA) axis is a major physiological system that mediates the stress response. Tight HPA axis regulation through negative feedback mechanisms is essential for health and environmental adaptation. This feedback regulation acts in part through the glucocorticoid receptor (GR) on several organizational levels, including the pituitary, the hypothalamus and the hippocampus. However, the precise role of the different anatomical structures, specifically the pituitary, in HPA axis regulation is yet largely unknown. Here, we show that a conditional pituitary GR knockout is not necessarily detrimental for the animal's ability to cope with chronic stress situations. Mice with a deletion of the GR at the pituitary (GR(POMCCre)) were subjected to 3 weeks of chronic social defeat stress. We analyzed both the behavioral and neuroendocrine phenotype as well as the central nervous system expression of genes involved in HPA axis function in these animals. Our results show a more resilient phenotype of GR(POMCCre) mice with respect to anxiety-related behavior and neuroendocrine parameters compared to stressed wild type animals. In light of the previously reported high corticosterone levels during postnatal development in GR(POMCCre) mice, our findings suggest that adverse early life events may have beneficial developmental effects on the organism to improve stress coping later in life.


Assuntos
Hipófise/metabolismo , Receptores de Glucocorticoides/genética , Estresse Psicológico/genética , Adaptação Psicológica/fisiologia , Animais , Comportamento Animal , Doença Crônica , Deleção de Genes , Predisposição Genética para Doença , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/fisiologia , Especificidade de Órgãos/genética , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa