Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(14): 7729-7738, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213584

RESUMO

Every cell produces thousands of distinct lipid species, but insight into how lipid chemical diversity contributes to biological signaling is lacking, particularly because of a scarcity of methods for quantitatively studying lipid function in living cells. Using the example of diacylglycerols, prominent second messengers, we here investigate whether lipid chemical diversity can provide a basis for cellular signal specification. We generated photo-caged lipid probes, which allow acute manipulation of distinct diacylglycerol species in the plasma membrane. Combining uncaging experiments with mathematical modeling, we were able to determine binding constants for diacylglycerol-protein interactions, and kinetic parameters for diacylglycerol transbilayer movement and turnover in quantitative live-cell experiments. Strikingly, we find that affinities and kinetics vary by orders of magnitude due to diacylglycerol side-chain composition. These differences are sufficient to explain differential recruitment of diacylglycerol binding proteins and, thus, differing downstream phosphorylation patterns. Our approach represents a generally applicable method for elucidating the biological function of single lipid species on subcellular scales in quantitative live-cell experiments.


Assuntos
Diglicerídeos/química , Lipídeos/química , Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas Biossensoriais , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Sobrevivência Celular , Isoenzimas/metabolismo , Cinética , Luz , Modelos Biológicos , Proteína Quinase C/metabolismo , Transdução de Sinais
2.
Anal Chem ; 91(18): 12085-12093, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31441640

RESUMO

Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.


Assuntos
Glicerofosfolipídeos/análise , Lipidômica , Modelos Moleculares , Software , Espectrometria de Massas em Tandem
3.
Chemistry ; 25(68): 15483-15487, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31461184

RESUMO

Photorelease of caged compounds is among the most powerful experimental approaches for studying cellular functions on fast timescales. However, its full potential has yet to be exploited, as the number of caged small molecules available for cell biological studies has been limited by synthetic challenges. Addressing this problem, a straightforward, one-step procedure for efficiently synthesizing caged compounds was developed. An in situ generated benzylic coumarin triflate reagent was used to specifically functionalize carboxylate and phosphate moieties in the presence of free hydroxy groups, generating various caged lipid metabolites, including a number of GPCR ligands. By combining the photo-caged ligands with the respective receptors, an easily implementable experimental platform for the optical control and analysis of GPCR-mediated signal transduction in living cells was developed. Ultimately, the described synthetic strategy allows rapid generation of photo-caged small molecules and thus greatly facilitates the analysis of their biological roles in live cell microscopy assays.


Assuntos
Cumarínicos/química , Lipídeos/síntese química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Ligantes , Lipídeos/química , Receptores Acoplados a Proteínas G/química , Transdução de Sinais/fisiologia
4.
Angew Chem Int Ed Engl ; 57(40): 13339-13343, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30048020

RESUMO

Lipid messengers exert their function on short time scales at distinct subcellular locations, yet most experimental approaches for perturbing their levels trigger cell-wide concentration changes. Herein, we report on a coumarin-based photocaging group that can be modified with organelle-targeting moieties by click chemistry and thus enables photorelease of lipid messengers in distinct organelles. We show that caged arachidonic acid and sphingosine derivatives can be selectively delivered to mitochondria, the ER, lysosomes, and the plasma membrane. By comparing the cellular calcium transients induced by localized uncaging of arachidonic acid and sphingosine, we show that the precise intracellular localization of the released second messenger is crucial for the signaling outcome. Ultimately, we anticipate that this new class of caged compounds will greatly facilitate the study of cellular processes on the organelle level.


Assuntos
Ácido Araquidônico/química , Química Click , Cumarínicos/química , Organelas/metabolismo , Esfingosina/análogos & derivados , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Cumarínicos/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Esfingosina/metabolismo , Imagem com Lapso de Tempo , Raios Ultravioleta
5.
Sci Rep ; 6: 27920, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27312775

RESUMO

We present a method for the systematic identification of picogram quantities of new lipids in total extracts of tissues and fluids. It relies on the modularity of lipid structures and applies all-ions fragmentation LC-MS/MS and Arcadiate software to recognize individual modules originating from the same lipid precursor of known or assumed structure. In this way it alleviates the need to recognize and fragment very low abundant precursors of novel molecules in complex lipid extracts. In a single analysis of rat kidney extract the method identified 58 known and discovered 74 novel endogenous endocannabinoids and endocannabinoid-related molecules, including a novel class of N-acylaspartates that inhibit Hedgehog signaling while having no impact on endocannabinoid receptors.


Assuntos
Cromatografia Líquida/métodos , Lipídeos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Endocanabinoides/análise , Rim/química , Ratos , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa