Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806083

RESUMO

Polyetheretherketone (PEEK) titanium composite (PTC) is a novel interbody fusion device that combines a PEEK core with titanium alloy (Ti6Al4V) endplates. The present study aimed to investigate the in vitro biological reactivity of human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) to micro- and nanotopographies produced by an acid-etching process on the surface of 3D-printed PTC endplates. Optical profilometer and scanning electron microscopy were used to assess the surface roughness and identify the nano-features of etched or unetched PTC endplates, respectively. The viability, morphology and the expression of specific osteogenic markers were examined after 7 days of culture in the seeded cells. Haralick texture analysis was carried out on the unseeded endplates to correlate surface texture features to the biological data. The acid-etching process modified the surface roughness of the 3D-printed PTC endplates, creating micro- and nano-scale structures that significantly contributed to sustaining the viability of hBM-MSCs and triggering the expression of early osteogenic markers, such as alkaline phosphatase activity and bone-ECM protein production. Finally, the topography of 3D-printed PTC endplates influenced Haralick's features, which in turn correlated with the expression of two osteogenic markers, osteopontin and osteocalcin. Overall, these data demonstrate that the acid-etching process of PTC endplates created a favourable environment for osteogenic differentiation of hBM-MSCs and may potentially have clinical benefit.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Cetonas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Polietilenoglicóis/metabolismo , Impressão Tridimensional , Propriedades de Superfície , Titânio/metabolismo
2.
J Shoulder Elbow Surg ; 27(3): 553-560, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29174271

RESUMO

BACKGROUND: Rotator cuff tears affect millions of individuals each year, often requiring surgical intervention. However, repair failure remains common. We have previously shown that pulsed electromagnetic field (PEMF) therapy improved tendon-to-bone healing in a rat rotator cuff model. The purpose of this study was to determine the influence of both PEMF frequency and exposure time on rotator cuff healing. METHODS: Two hundred ten Sprague-Dawley rats underwent acute bilateral supraspinatus injury and repair followed by either Physio-Stim PEMF or high-frequency PEMF therapy for 1, 3, or 6 hours daily. Control animals did not receive PEMF therapy. Mechanical and histologic properties were assessed at 4, 8, and 16 weeks. RESULTS: Improvements in different mechanical properties at various endpoints were identified for all treatment modalities when compared with untreated animals, regardless of PEMF frequency or duration. Of note, 1 hour of Physio-Stim treatment showed significant improvements in tendon mechanical properties across all time points, including increases in both modulus and stiffness as early as 4 weeks. Collagen organization improved for several of the treatment groups compared with controls. In addition, improvements in type I collagen and fibronectin expression were identified with PEMF treatment. An important finding was that no adverse effects were identified in any mechanical or histologic property. CONCLUSIONS: Overall, our results suggest that PEMF therapy has a positive effect on rat rotator cuff healing for each electromagnetic fundamental pulse frequency and treatment duration tested in this study.


Assuntos
Magnetoterapia/métodos , Lesões do Manguito Rotador/terapia , Cicatrização , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Procedimentos de Cirurgia Plástica , Manguito Rotador/cirurgia , Tendões/cirurgia
3.
J Arthroplasty ; 28(8): 1421-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23523501

RESUMO

A novel, nonresorbable, monolithic composite structure ceramic, developed using a partially stabilized zirconia ceramic common to implantable devices, was used in a cementless weight-bearing articular implant to test the feasibility of replacing a region of degenerated or damaged articular cartilage in the knee as part of a preclinical study using male mongrel dogs lasting up to 24 weeks. Gross/histological cartilage observations showed no differences among control, 12-week and 24-week groups, while pull-out tests showed an increase in maximum pull-out load over time relative to controls. Hence, the use of a novel ceramic implant as a replacement for a focal cartilage defect leads to effective implant fixation within 12 weeks and does not cause significant degradation in opposing articular cartilage in the time frame evaluated.


Assuntos
Doenças das Cartilagens/cirurgia , Cartilagem Articular/cirurgia , Fêmur/cirurgia , Hemiartroplastia/instrumentação , Prótese Articular , Articulação do Joelho/cirurgia , Animais , Fenômenos Biomecânicos , Doenças das Cartilagens/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Cerâmica , Modelos Animais de Doenças , Cães , Fêmur/diagnóstico por imagem , Hemiartroplastia/métodos , Articulação do Joelho/diagnóstico por imagem , Masculino , Teste de Materiais , Radiografia , Resultado do Tratamento , Zircônio
4.
J Spine Surg ; 9(1): 39-53, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37038423

RESUMO

Background: Pain and disability due to age-related spinal disorders are increasing due to a more active population placing greater demands on their musculoskeletal system. For patients requiring surgery, spinal fusion is typically indicated. Interbody fusion cages improve fusion rates and restore lordosis, disc height, and foraminal height. Static cages are offered in multiple conformations to account for anatomic variability; however, they have issues related to implant subsidence and loss of lordosis. Expandable cages were developed to address these drawbacks. Methods: Patients treated with either static or expandable transforaminal lumbar interbody fusion devices (ProLift® Expandable Spacer System) for the treatment of spondylolisthesis, degenerative disc disease, spinal stenosis, disc herniation, or degenerative scoliosis at L4-L5 or L5-S1 were chosen from retrospective data. Outcomes included radiographic and spinopelvic changes, patient-reported outcomes, and incidence of non-union and revision surgery. Results: One hundred patients were included (Static: 50; Expandable: 50). Demographics between groups were similar, with some differences in comorbidities and spinal disease diagnosis. Radiographically, changes in disc height, foraminal height, and lordosis were significantly improved in the Expandable group up to 2 years (P<0.001). Improvements in patient reported outcomes were more favorable in the Expandable group. Conclusions: In patients who underwent transforaminal lumbar spinal fusion via minimally invasive surgery, the Expandable device group demonstrated significantly improved radiographic and patient reported outcomes compared to a static cage over 2 years.

5.
Bioact Mater ; 22: 312-324, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36263100

RESUMO

Functional tissue engineering strategies provide innovative approach for the repair and regeneration of damaged cartilage. Hydrogel is widely used because it could provide rapid defect filling and proper structure support, and is biocompatible for cell aggregation and matrix deposition. Efforts have been made to seek suitable scaffolds for cartilage tissue engineering. Here Alg-DA/Ac-ß-CD/gelatin hydrogel was designed with the features of physical and chemical multiple crosslinking and self-healing properties. Gelation time, swelling ratio, biodegradability and biocompatibility of the hydrogels were systematically characterized, and the injectable self-healing adhesive hydrogel were demonstrated to exhibit ideal properties for cartilage repair. Furthermore, the new hydrogel design introduces a pre-gel state before photo-crosslinking, where increased viscosity and decreased fluidity allow the gel to remain in a semi-solid condition. This granted multiple administration routes to the hydrogels, which brings hydrogels the ability to adapt to complex clinical situations. Pulsed electromagnetic fields (PEMF) have been recognized as a promising solution to various health problems owing to their noninvasive properties and therapeutic potentials. PEMF treatment offers a better clinical outcome with fewer, if any, side effects, and wildly used in musculoskeletal tissue repair. Thereby we propose PEMF as an effective biophysical stimulation to be 4th key element in cartilage tissue engineering. In this study, the as-prepared Alg-DA/Ac-ß-CD/gelatin hydrogels were utilized in the rat osteochondral defect model, and the potential application of PEMF in cartilage tissue engineering were investigated. PEMF treatment were proven to enhance the quality of engineered chondrogenic constructs in vitro, and facilitate chondrogenesis and cartilage repair in vivo. All of the results suggested that with the injectable self-healing adhesive hydrogel and PEMF treatment, this newly proposed tissue engineering strategy revealed superior clinical potential for cartilage defect treatment.

6.
J Neurosurg Spine ; 38(2): 249-257, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272125

RESUMO

OBJECTIVE: This analysis evaluated if spinal cord stimulation (SCS) at 10 kHz plus conventional medical management (CMM) is cost-effective compared with CMM alone for the treatment of nonsurgical refractory back pain (NSRBP). METHODS: NSRBP subjects were randomized 1:1 into the 10-kHz SCS (n = 83) or CMM (n = 76) group. Outcomes assessed at 6 months included EQ-5D 5-level (EQ-5D-5L), medication usage, and healthcare utilization (HCU). There was an optional crossover at 6 months and follow-up to 12 months. The incremental cost-effectiveness ratio (ICER) was calculated with cost including all HCU and medications except for the initial device and implant procedure, and cost-effectiveness was analyzed based on a willingness-to-pay threshold of < $50,000 per quality-adjusted life-year. RESULTS: Treatment with 10-kHz SCS resulted in a significant improvement in quality of life (QOL) over CMM (EQ-5D-5L index score change of 0.201 vs -0.042, p < 0.001) at a lower cost, based on reduced frequency of HCU resulting in an ICER of -$4964 at 12 months. The ICER was -$8620 comparing the 6 months on CMM with postcrossover on 10-kHz SCS. CONCLUSIONS: Treatment with 10-kHz SCS provides higher QOL at a lower average cost per patient compared with CMM. Assuming an average reimbursement for device and procedure, 10-kHz SCS therapy is predicted to be cost-effective for the treatment of NSRBP compared with CMM within 2.1 years.


Assuntos
Dor Crônica , Síndrome Pós-Laminectomia , Estimulação da Medula Espinal , Humanos , Estimulação da Medula Espinal/métodos , Análise Custo-Benefício , Qualidade de Vida , Dor nas Costas , Síndrome Pós-Laminectomia/terapia , Resultado do Tratamento , Medula Espinal
7.
Technol Cancer Res Treat ; 21: 15330338221124658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172744

RESUMO

Introduction: Although there have been significant advances in research and treatments over the past decades, cancer remains a leading cause of morbidity and mortality, mostly due to resistance to standard therapies. Pulsed electromagnetic field (PEMF), a newly emerged therapeutic strategy, has been highly regarded as less invasive and almost safe to patients, is now a clinically accepted form to treat diseases including cancer. Breast and lung cancer are the most prevalent forms of human cancers, yet reported investigations on exploring regimes including PEMF are limited. Methods: Intended to examine the anti-tumor effects of a clinically accepted osteogenic PEMF and the possibility of including PEMF in breast and lung cancer treatments, we studied the effects of 2 PEMF signals (PMF1 and PMF2) on breast and lung cancer cell growth and proliferation, as well as the possible underline mechanisms in vitro and in vivo. Results: We found that both signals caused modest but significant growth inhibition (∼5%) in MCF-7 and A549 cancer cells. Interestingly, mice xenograft tumors with A549 cells treated by PEMF were smaller in sizes than controls. However, for mice with MCF-7 tumor implants, treatment with PMF1 resulted in a slight increase (2.8%) in mean tumor size, while PMF2 treated tumors showed a 9% reduction in average size. Furthermore, PEMF increased caspase 3/7 expression levels and percentage of annexin stained cells, indicating the induction of apoptosis. It also increased G0 by 8.5%, caused changes in the expression of genes associated with cell growth suppression, DNA damage, cell cycle arrest, and apoptosis. When cancer cells or xenograft tumors treated with combined PEMF and chemotherapy drugs, PEMF showed growth inhibition effect independent of cisplatin in A549 cells, but with added effect by pemetrexed for the inhibition of MCF-7 growth. Conclusion: Together, our data suggested that clinically used osteogenic PEMF signals moderately suppressed cancer cell growth and proliferation both in vitro and in vivo.


Assuntos
Neoplasias da Mama , Campos Eletromagnéticos , Neoplasias Pulmonares , Células A549 , Animais , Anexinas , Neoplasias da Mama/terapia , Caspase 3 , Cisplatino , Humanos , Neoplasias Pulmonares/terapia , Células MCF-7 , Camundongos , Pemetrexede
8.
J Orthop Res ; 40(7): 1593-1603, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34657312

RESUMO

Rotator cuff repair failure remains common due to poor tendon healing, particularly at the enthesis. We previously showed that pulsed electromagnetic field (PEMF) therapy improved the mechanical properties of the rat supraspinatus tendon postoperatively. However, little is known about the mechanisms behind PEMF-dependent contributions to improved healing in this injury model. The objective of this study was to determine the influence of PEMF treatment on tendon gene expression and cell composition, as well as bone microarchitecture and dynamic bone metabolism during early stages of healing. We hypothesized that PEMF treatment would amplify tendon-healing related signaling pathways while mitigating inflammation and improve bone metabolism at the repair site. Rats underwent rotator cuff injury and repair followed by assignment to either control (non-PEMF) or PEMF treatment groups. Gene and protein expression as well as tendon and bone histological assessments were performed 3, 7, 14, 21, and 28 days after injury. Gene expression data demonstrated an upregulation in the bone morphogenetic protein 2 signaling pathway and increases in pro-osteogenic genes at the insertion, supporting important processes to re-establish the tendon-bone interface. PEMF also downregulated genes related to a fibrotic healing response. Anti-inflammatory effects were demonstrated by both gene expression and macrophage phenotype. PEMF significantly increased the rate of kinetic bone formation directly adjacent to the tendon enthesis as well as the number of cuboidal surface osteoblasts (active osteoblasts) in the humeral head. This study has provided insight into how PEMF affects cellular and molecular processes in the supraspinatus tendon and adjacent bone after injury and repair.


Assuntos
Lesões do Manguito Rotador , Animais , Fenômenos Biomecânicos , Campos Eletromagnéticos , Ratos , Ratos Sprague-Dawley , Manguito Rotador/patologia , Lesões do Manguito Rotador/patologia , Cicatrização
9.
J Shoulder Elbow Surg ; 20(6): 904-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21420321

RESUMO

BACKGROUND: Despite the high prevalence of rotator cuff disease in the aging adult population, the basic mechanisms initiating the disease are not known. It is known that changes occur at both the bone and tendon after rotator cuff tears. However, no study has focused on early or "pretear" rotator cuff disease states. The purpose of this study was to compare the bone mineral density of the greater tuberosity in normal subjects with that in subjects with impingement syndrome and full-thickness rotator cuff tears. MATERIALS AND METHODS: Digital anteroposterior shoulder radiographs were obtained for 3 sex- and age-matched study groups (men, 40-70 years old): normal asymptomatic shoulders (control), rotator cuff disease without full-thickness tears (impingement), and full-thickness rotator cuff tears (n = 39 per group). By use of imaging software, bone mineral densities were determined for the greater tuberosity, the greater tuberosity cortex, the greater tuberosity subcortex, and the cancellous region of the humeral head. RESULTS: The bone mineral density of the greater tuberosity was significantly higher for the normal control subjects compared with subjects with impingement or rotator cuff tears. No differences were found between the two groups of patients with known rotator cuff disease. The greater tuberosity cortex and greater tuberosity subcortex outcome measures were similar. CONCLUSION: Bone mineral changes are present in the greater tuberosity of shoulders with rotator cuff disease both with and without full-thickness tears. The finding of focal diminished bone mineral density of the greater tuberosity in the absence of rotator cuff tears warrants further investigation.


Assuntos
Densidade Óssea , Cabeça do Úmero/diagnóstico por imagem , Lesões do Manguito Rotador , Manguito Rotador/diagnóstico por imagem , Tendinopatia/diagnóstico por imagem , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Radiografia , Estudos Retrospectivos
10.
PLoS One ; 16(2): e0244223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539401

RESUMO

Pulsed Electromagnetic Field (PEMF) has shown efficacy in bone repair and yet the optimum characteristics of this modality and its molecular mechanism remain unclear. To determine the effects of timing of PEMF treatment, we present a novel three-dimensional culture model of osteogenesis that demonstrates strong de novo generation of collagen and mineral matrix and exhibits stimulation by PEMF in multiple stages over 62 days of culture. Mouse postnatal day 2 calvarial pre-osteoblasts were cast within and around Teflon rings by polymerization of fibrinogen and cultured suspended without contact with tissue culture plastic. Ring constructs were exposed to PEMF for 4h/day for the entire culture (Daily), or just during Day1-Day10, Day11-Day 27, or Day28-Day63 and cultured without PEMF for the preceding or remaining days, and compared to no-PEMF controls. PEMF was conducted as HF Physio, 40.85 kHz frequency with a 67 ms burst period and an amplitude of 1.19 mT. Osteogenesis was kinetically monitored by repeated fluorescence measurements of continuously present Alizarin Red S (ARS) and periodically confirmed by micro-CT. PEMF treatment induced early-onset and statistically significant transient stimulation (~4-fold) of the mineralization rate when PEMF was applied Daily, or during D1-D10 and D11-D27. Stimulation was apparent but not significant between D28-D63 by ARS but was significant at D63 by micro-CT. PEMF also shifted the micro-CT density profiles to higher densities in each PEMF treatment group. Ring culture generated tissue with a mineral:matrix ratio of 2.0 by thermogravimetric analysis (80% of the calvaria control), and the deposited crystal structure was 50% hydroxyapatite by X-ray diffraction (63% of the calvaria and femur controls), independent of PEMF. These results were consistent with backscatter, secondary electron, and elemental analysis by scanning electron microscopy. Thus, in a defined, strong osteogenic environment, PEMF applied at different times was capable of further stimulation of osteogenesis with the potential to enhance bone repair.


Assuntos
Campos Eletromagnéticos , Osteoblastos/efeitos da radiação , Osteogênese/efeitos da radiação , Animais , Proliferação de Células/efeitos da radiação , Células Cultivadas , Camundongos
11.
PLoS One ; 16(2): e0247659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630907

RESUMO

Pulsed-electromagnetic-field (PEMF) treatment was found to enhance cellular differentiation of the mouse preosteoblast, MC3T3-E1, to a more osteoblastic phenotype. Differentiation genes such as Alp, BSPI, cFos, Ibsp, Osteocalcin, Pthr1 and Runx2 showed increased expression in response to PEMF stimulation. Detailed molecular mechanisms linking PEMF to the activation of these genes are limited. Two adenosine receptors known to be modulated in response to PEMF, Adora2A and Adora3, were functionally impaired by CRISPR-Cas9-mediated gene disruption, and the consequences of which were studied in the context of PEMF-mediated osteoblastic differentiation. Disruption of Adora2A resulted in a delay of Alp mRNA expression, but not alkaline phosphatase protein expression, which was similar to that found in wild type cells. However, Adora3 disruption resulted in significantly reduced responses at both the alkaline phosphatase mRNA and protein levels throughout the PEMF stimulation period. Defects observed in response to PEMF were mirrored using a chemically defined growth and differentiation-inducing media (DM). Moreover, in cells with Adora2A disruption, gene expression profiles showed a blunted response in cFos and Pthr1 to PEMF treatment; whereas cells with Adora3 disruption had mostly blunted responses in AlpI, BSPI, Ibsp, Osteocalcin and Sp7 gene activation. To demonstrate specificity for Adora3 function, the Adora3 open reading frame was inserted into the ROSA26 locus in Adora3 disrupted cells culminating in rescued PEMF responsiveness and thereby eliminating the possibility of off-target effects. These results lead us to propose that there are complementary and parallel positive roles for adenosine receptor A2A and A3 in PEMF-mediated osteoblast differentiation.


Assuntos
Radiação Eletromagnética , Osteoblastos/citologia , Osteogênese , Receptor A2A de Adenosina , Receptor A3 de Adenosina , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica , Camundongos , Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo
12.
Bone ; 143: 115761, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217628

RESUMO

Pulsed electromagnetic field (PEMF) treatments stimulate bone formation activities though further work is needed to optimize its therapeutic benefit. PEMF can generate local potential gradients and electric currents that have been suggested to mimic bone electrochemical responses to load. In line with this reasoning, a recent publication reported that PEMF application on isolated bone tissue induced detectable micro-vibrations (doi:https://doi.org/10.1109/TMAG.2016.2515069). To determine the ability of PEMF to intervene in a rat model of osteoporosis, we tested its effect on trabecular and cortical bone following ovariectomy. Four PEMF treatments, with increasing sinusoidal amplitude rise with time (3850 Hz pulse frequency and 15 Hz repetition rate at 10 tesla/sec (T/s), 30 T/s, 100 T/s, or 300 T/s), were compared to the efficacy of an osteoporosis drug, alendronate, in reducing levels of trabecular bone loss in the proximal tibia. Herein, the novel findings from our study are: (1) 30 T/s PEMF treatment approached the efficacy of alendronate in reducing trabecular bone loss, but differed from it by not reducing bone formation rates; and (2) 30 T/s and 100 T/s PEMF treatments imparted measurable alterations in lacunocanalicular features in cortical bone, consistent with osteocyte sensitivity to PEMF in vivo. The efficacy of specific PEMF doses may relate to their ability to modulate osteocyte function such that the 30 T/s, and to a lesser extent 100 T/s, doses preferentially antagonize trabecular bone resorption while stimulating bone formation. Thus, PEMF treatments of specific magnetic field magnitudes exert a range of measurable biological effects in trabecular and cortical bone tissue in osteoporotic rats.


Assuntos
Doenças Ósseas Metabólicas , Campos Eletromagnéticos , Alendronato/farmacologia , Alendronato/uso terapêutico , Animais , Remodelação Óssea , Feminino , Humanos , Ovariectomia , Ratos , Microtomografia por Raio-X
13.
Tissue Eng Part A ; 27(5-6): 402-412, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746770

RESUMO

Delayed bone healing is a major challenge in orthopedic clinical practice, highlighting a need for technologies to overcome ineffective cell growth and osteogenic differentiation. The objective of this study was to investigate the synergistic effects of the PhysioStim (PEMF) signal with iron-ion doped tri-calcium phosphate bone substitute on human mesenchymal stem cell (hMSC) osteogenesis in vitro. Intrinsically magnetic nano-bone substitutes (MNBS) were developed with single particles on the order of 100 nm, saturation magnetization of 0.425 emu/g, and remanent magnetization of 0.013 emu/g. MNBS were added to hMSC culture and cell viability, alkaline phosphatase (ALP) activity, mineralization, and osteogenic gene expression in the presence and absence of PEMF were quantified for up to 10 days. MNBS attached to the surface of and were internalized by hMSCs when cultured together for 4 days and had no impact on cell viability with PEMF exposure for up to 7 days. Although total ALP activity was significantly increased with PEMF treatment alone, with a peak at day 5, PEMF combined with MNBS significantly increased ALP activity, with a peak at day 3, compared with all other groups (p < 0.01). The shift can be explained by significantly increased extracellular ALP activity beginning at day 2 (p < 0.01). PEMF combined with MNBS demonstrated continuously increasing mineralization overtime, with significantly greater Alizarin Red S concentration compared with all other groups at day 7 (p < 0.01). Increases in ALP activity and mineral content were in agreement with osteogenic gene expression that demonstrated peak ALP gene expression at day 1, and upregulated BMP-2, BGLAP, and SPP1 gene expression at day 7 (p < 0.05). The results of this study demonstrate the synergistic effects of PEMF and MNBS on osteogenesis and suggest that PEMF and MNBS may provide a method for accelerated bone healing.


Assuntos
Nanopartículas de Magnetita , Osteogênese , Fosfatase Alcalina , Diferenciação Celular , Células Cultivadas , Campos Eletromagnéticos , Humanos , Campos Magnéticos , Osteoblastos
14.
Spine (Phila Pa 1976) ; 46(4): E222-E233, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33475275

RESUMO

STUDY DESIGN: An experimental animal study. OBJECTIVE: The aim of this study was to investigate the effect of pulsed electromagnetic fields (PEMF) on recovery of sensorimotor function in a rodent model of disc herniation (DH). SUMMARY OF BACKGROUND DATA: Radiculopathy associated with DH is mediated by proinflammatory cytokines. Although we have demonstrated the anti-inflammatory effects of PEMF on various tissues, we have not investigated the potential therapeutic effect of PEMF on radiculopathy resulting from DH. METHODS: Nineteen rats were divided into three groups: positive control (PC; left L4 nerve ligation) (n = 6), DH alone (DH; exposure of left L4 dorsal root ganglion [DRG] to harvested nucleus pulposus and DRG displacement) (n = 6), and DH + PEMF (n = 7). Rodents from the DH + PEMF group were exposed to PEMF immediately postoperatively and for 3 hours/day until the end of the study. Sensory function was assessed via paw withdrawal thresholds to non-noxious stimuli preoperatively and 1 and 3 days postoperatively, and every 7 days thereafter until 7 weeks after surgery. Motor function was assessed via DigiGait treadmill analysis preoperatively and weekly starting 7 days following surgery until 7 weeks following surgery. RESULTS: All groups demonstrated marked increases in the left hindlimb response threshold postoperatively. However, 1 week following surgery, there was a significant effect of condition on left hindlimb withdrawal thresholds (one-way analysis of variance: F = 3.82, df = 2, P = 0.044) where a more rapid recovery to baseline threshold was evident for DH + PEMF compared to PC and DH alone. All groups demonstrated gait disturbance postoperatively. However, DH + PEMF rodents were able to regain baseline gait speeds before DH and PC rodents. When comparing gait parameters, DH + PEMF showed consistently less impairment postoperatively suggesting that PEMF treatment was associated with less severe gait disturbance. CONCLUSION: These data demonstrate that PEMF accelerates sensorimotor recovery in a rodent model of DH, suggesting that PEMF may be reasonable to evaluate for the clinical management of patients with herniation-associated radiculopathy.Level of Evidence: N/A.


Assuntos
Deslocamento do Disco Intervertebral/fisiopatologia , Deslocamento do Disco Intervertebral/radioterapia , Animais , Citocinas , Gânglios Espinais/fisiopatologia , Gânglios Espinais/efeitos da radiação , Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral/complicações , Masculino , Radiculopatia/etiologia , Radiculopatia/fisiopatologia , Radiculopatia/radioterapia , Ratos , Ratos Sprague-Dawley , Velocidade de Caminhada/efeitos da radiação
15.
Bone Joint Res ; 10(12): 767-779, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34872332

RESUMO

AIMS: Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation. METHODS: The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (µCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation. RESULTS: All rats tolerated the treatment well and no obvious adverse effects were found. By comparison, the HSR signal (three hrs/day) treatment group achieved the best healing outcome, in that endochondral ossification and bone consolidation were enhanced. In addition, HSR signal treatment (one one hr/day) had similar effects to treatment using the classic signal (three three hrs/day), indicating that treatment duration could be significantly shortened with the HSR signal. CONCLUSION: HSR signal may significantly enhance bone formation and shorten daily treatment duration in DO, making it a potential candidate for a new clinical protocol for patients undergoing DO treatments. Cite this article: Bone Joint Res 2021;10(12):767-779.

16.
JOR Spine ; 3(2): e1084, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613160

RESUMO

INTRODUCTION: Cellular bone matrices (CBM) are allograft products that provide three components essential to new bone formation: an osteoconductive scaffold, extracellular growth factors for cell proliferation and differentiation, and viable cells with osteogenic potential. This is an emerging technology being applied to augment spinal fusion procedures as an alternative to autografts. METHODS: We aim to compare the ability of six commercially-available human CBMs (Trinity ELITE®, ViviGen®, Cellentra®, Osteocel® Pro, Bio4® and Map3®) to form a stable spinal fusion using an athymic rat model of posterolateral fusion. Iliac crest bone from syngeneic rats was used as a control to approximate the human gold standard. The allografts were implanted at L4-5 according to vendor specifications in male athymic rats, with 15 rats in each group. MicroCT scans were performed at 48 hours and 6 weeks post-implantation. The rats were euthanized 6 weeks after surgery and the lumbar spines were harvested for X-ray, manual palpation and histology analysis by blinded reviewers. RESULTS: By manual palpation, five of 15 rats of the syngeneic bone group were fused at 6 weeks. While Trinity ELITE had eight of 15 and Cellentra 11 of 15 rats with stable fusion, only 2 of 15 of ViviGen-implanted spines were fused and zero of 15 of the Osteocel Pro, Bio4 and Map3 produced stable fusion. MicroCT analysis indicated that total bone volume increased from day 0 to week 6 for all groups except syngeneic bone group. Trinity ELITE (65%) and Cellentra (73%) had significantly greater bone volume increases over all other implants, which was consistent with the histological analysis. CONCLUSION: Trinity ELITE and Cellentra were significantly better than other implants at forming new bone and achieving spinal fusion in this rat model at week 6. These results suggest that there may be large differences in the ability of different CBMs to elicit a successful fusion in the posterolateral spine.

17.
Bone ; 138: 115513, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32603910

RESUMO

Bone morphogenetic proteins (BMPs) were first described over 50 years ago as potent inducers of ectopic bone formation when administrated subcutaneously. Preclinical studies have extensively examined the osteoinductive properties of BMPs in vitro and new bone formation in vivo. BMPs (BMP-2, BMP-7) have been used in orthopedics over 15 years. While osteogenic function of BMPs has been widely accepted, our previous studies demonstrated that loss-of-function of BMP receptor type IA (BMPR1A), a potent receptor for BMP-2, increased net bone mass by significantly inhibiting bone resorption in mice, indicating a positive role of BMP signaling in bone resorption. The physiological role of BMPs (i.e. osteogenic vs. osteoclastogenic) is still largely unknown. The purpose of this study was to investigate the physiological role of BMP signaling in endogenous long bones during adult stages. For this purpose, we conditionally and constitutively activated the Smad-dependent canonical BMP signaling thorough BMPR1A in osteoblast lineage cells using the mutant mice (Col1CreER™:caBmpr1a). Because trabecular bones were largely increased in the loss-of-function mouse study for BMPR1A, we hypothesized that the augmented BMP signaling would affect endogenous trabecular bones. In the mutant bones, the Smad phosphorylation was enhanced within physiological level three-fold while the resulting gross morphology, bodyweights, bone mass/shape/length, serum calcium/phosphorus levels, collagen cross-link patterns, and healing capability were all unchanged. Interestingly, we found; 1) increased expressions of both bone formation and resorption markers in femoral bones, 2) increased osteoblast and osteoclast numbers together with dynamic bone formation parameters by trabecular bone histomorphometry, 3) modest bone architectural phenotype with reduced bone quality (i.e. reduced trabecular bone connectivity, larger diametric size but reduced cortical bone thickness, and reduced bone mechanical strength), and 4) increased expression of SOST, a downstream target of the Smad-dependent BMPR1A signaling, in the mutant bones. This study is clinically insightful because gain-of-function of BMP signaling within a physiological window does not increase bone mass while it alters molecular and cellular aspects of osteoblast and osteoclast functions as predicted. These findings help explain the high-doses of BMPs (i.e. pharmacological level) in clinical settings required to substantially induce a bone formation, concurrent with potential unexpected side effects (i.e. bone resorption, inflammation) presumably due to a broader population of cell-types exposed to the high-dose BMPs rather than osteoblastic lineage cells.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Osteogênese , Transdução de Sinais , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas , Camundongos , Osteoblastos/metabolismo
18.
Int J Spine Surg ; 14(2): 213-221, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32355628

RESUMO

BACKGROUND: To evaluate the comparative abilities of commercially available, viable, cellular bone allografts to promote posterolateral spinal fusion. METHODS: Human allografts containing live cells were implanted in the athymic rat model of posterolateral spine fusion. Three commercially available allogeneic cellular bone matrices (Trinity Evolution, Trinity ELITE and Osteocel Plus) were compared with syngeneic iliac crest bone as the control. All spines underwent radiographs, manual palpation, and micro-computed tomography (CT) analysis after excision at 6 weeks. Histological sections of randomly selected spines were subjected to semiquantitative histopathological scoring for bone formation. RESULTS: By manual palpation, posterolateral fusion was detected in 40% (6/15) of spines implanted with syngeneic bone, whereas spines implanted with Trinity Evolution and Trinity ELITE allografts yielded 71% (10/14) and 77% (10/13) fusion, respectively. Only 7% (1/14) of spines implanted with Osteocel Plus allografts were judged fused by manual palpation (statistically significantly less than ELITE, P < .0007, and Evolution, P < .0013). The mineralized cancellous bone component of the allografts confounded radiographic analysis, but Trinity Evolution (0.452 ± 0.064) and Trinity ELITE (0.536 ± 0.109) allografts produced statistically significantly higher bone fusion mass volumes measured by quantitative micro-CT than did syngeneic bone (0.292 ± 0.109, P < .0001 for ELITE and P < .003 for Evolution) and Osteocel Plus (0.258 ± 0.103, P < .0001). Semiquantitative histopathological scores supported these findings because the total bone and bone marrow scores reflected significantly better new bone and marrow formation in the Trinity groups than in the Osteocel Plus group. CONCLUSIONS: The Trinity Evolution and Trinity ELITE cellular bone allografts were more effective at creating posterolateral fusion than either the Osteocel Plus allografts or syngeneic bone in this animal model. CLINICAL RELEVANCE: The superior fusion rate of Trinity cellular bone allografts may lead to better clinical outcome of spinal fusion surgeries.

19.
J Orthop Res ; 38(1): 70-81, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31595543

RESUMO

The Achilles tendon is frequently injured. Data to support specific treatment strategies for complete and partial tears is inconclusive. Regardless of treatment, patients risk re-rupture and typically have long-term functional deficits. We previously showed that pulsed electromagnetic field (PEMF) therapy improved tendon-to-bone healing in a rat rotator cuff model. This study investigated the effects of PEMF on rat ankle function and Achilles tendon properties after (i) complete Achilles tendon tear and repair with immobilization, (ii) partial Achilles tendon tear without repair and with immobilization, and (iii) partial Achilles tendon tear without repair and without immobilization. We hypothesized that PEMF would improve tendon properties, increase collagen organization, and improve joint function, regardless of injury type. After surgical injury, animals were assigned to a treatment group: (i) no treatment control, (ii) 1 h of PEMF per day, or (iii) 3 h of PEMF per day. Animals were euthanized at 1, 3, and 6 weeks post-injury. Joint mechanics and gait analysis were assessed over time, and fatigue testing and histology were performed at each time point. Results indicate no clear differences in Achilles healing with PEMF treatment. Some decreases in tendon mechanical properties and ankle function suggest PEMF may be detrimental after complete tear. Some early improvements were seen with PEMF after partial tear with immobilization; however, immobilization was found to be a confounding factor. This body of work emphasizes the distinct effects of PEMF on tendon-to-bone healing and supports trialing potential treatment strategies pre-clinically across tendons before applying them clinically. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:70-81, 2020.


Assuntos
Magnetoterapia , Traumatismos dos Tendões/terapia , Tendão do Calcâneo/lesões , Animais , Masculino , Ratos Sprague-Dawley
20.
Bone ; 137: 115402, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360900

RESUMO

Bone morphogenetic protein (BMP) signaling in osteoblasts plays critical roles in skeletal development and bone homeostasis. Our previous studies showed loss of function of BMPR1A, one of the type 1 receptors for BMPs, in osteoblasts results in increased trabecular bone mass in long bones due to an imbalance between bone formation and bone resorption. Decreased bone resorption was associated with an increased mature-to-immature collagen cross-link ratio and mineral-matrix ratios in the trabecular compartments, and increased tissue-level biomechanical properties. Here, we investigated the bone mass, bone composition and biomechanical properties of ribs and spines in the same genetically altered mouse line to compare outcomes by loss of BMPR1A functions in bones from different anatomic sites and developmental origins. Bone mass was significantly increased in both cortical and trabecular compartments of ribs with minimal to modest changes in compositions. While tissue-levels of biomechanical properties were not changed between control and mutant animals, whole bone levels of biomechanical properties were significantly increased in association with increased bone mass in the mutant ribs. For spines, mutant bones showed increased bone mass in both cortical and trabecular compartments with an increase of mineral content. These results emphasize the differential role of BMP signaling in osteoblasts in bones depending on their anatomical locations, functional loading requirements and developmental origin.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Osso e Ossos , Osteoblastos , Transdução de Sinais , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Proteínas Morfogenéticas Ósseas , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa