Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523147

RESUMO

Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.


Assuntos
Antígeno AC133/metabolismo , Cílios/metabolismo , Incisivo/citologia , Antígeno AC133/genética , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Incisivo/metabolismo , Camundongos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Transporte Proteico , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
Curr Med (Cham) ; 1(1): 7, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694720

RESUMO

Crosstalk between different signalling pathways provide deep insights for how molecules play synergistic roles in developmental and pathological conditions. RBP-Jkappa is the key effector of the canonical Notch pathway. Previously we have identified that Wnt5a, a conventional non-canonical Wnt pathway member, was under the direct transcriptional control of RBP-Jkappa in dermal papilla cells. In this study we further extended this regulation axis to the other two kind of skeletal cells: chondrocytes and osteoblasts. Mice with conditional mesenchymal deletion of RBP-Jkappa developed Rickets like symptoms. Molecular analysis suggested local defects of Wnt5a expression in chondrocytes and osteoblasts at both mRNA and protein levels, which impeded chondrocyte and osteoblast differentiation. The defects existing in the RBP-Jkappa deficient mutants could be rescued by recombinant Wnt5a treatment at both cellular level and tissue/organ level. Our results therefore provide a model of studying the connection of Notch and Wnt5a pathways with Rickets. Supplementary Information: The online version contains supplementary material available at 10.1007/s44194-022-00007-w.

3.
Nat Commun ; 10(1): 3596, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399601

RESUMO

Stem cells (SCs) receive inductive cues from the surrounding microenvironment and cells. Limited molecular evidence has connected tissue-specific mesenchymal stem cells (MSCs) with mesenchymal transit amplifying cells (MTACs). Using mouse incisor as the model, we discover a population of MSCs neibouring to the MTACs and epithelial SCs. With Notch signaling as the key regulator, we disclose molecular proof and lineage tracing evidence showing the distinct MSCs contribute to incisor MTACs and the other mesenchymal cell lineages. MTACs can feedback and regulate the homeostasis and activation of CL-MSCs through Delta-like 1 homolog (Dlk1), which balances MSCs-MTACs number and the lineage differentiation. Dlk1's function on SCs priming and self-renewal depends on its biological forms and its gene expression is under dynamic epigenetic control. Our findings can be validated in clinical samples and applied to accelerate tooth wound healing, providing an intriguing insight of how to direct SCs towards tissue regeneration.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Incisivo/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular , Linhagem da Célula , Dentina , Epigenômica , Feminino , Expressão Gênica , Homeostase , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Modelos Animais , Dente Serotino , Ratos , Ratos Wistar , Transdução de Sinais , Nicho de Células-Tronco/fisiologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa