Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Genet ; 286-287: 43-47, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067332

RESUMO

ATM gene is implicated in the development of breast cancer in the heterozygous state, and Ataxia-telangiectasia (A-T) in a homozygous or compound heterozygous state. Ataxia-telangiectasia (A-T) is a rare cerebellar ataxia syndrome presenting with progressive neurologic impairment, telangiectasia, and an increased risk of leukemia and lymphoma. Although the role of ATM, separately, in association with A-T and breast cancer is well documented, there is a limited number of studies investigating ATM variants when segregating with both phenotypes in the same family. Here, using joint analysis and whole genome sequencing, we investigated ATM c.1564_1565del in a family with one homozygous member presenting with A-T (OMIM # 208900) and three heterozygous members, of whom one had breast cancer (OMIM #114480). To our knowledge, this is the first study of ATM c.1564_1565del segregation with both A-T and breast cancer phenotypes within the same kindred. This study highlights the need for a comprehensive genomic approach in the appropriate cancer risk management of heterozygote carriers of ATM in families with A-T.

2.
Am J Case Rep ; 25: e943641, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995884

RESUMO

BACKGROUND Neurodevelopmental disorders (NDD) are umbrella disorders that encompass global developmental delay (GDD), intellectual disability, autism spectrum disorders, motor developmental disorders, and sleep disorders. Both GDD and autism spectrum disorder are common and yet clinically and genetically heterogeneous disorders. Despite their high prevalence and the advent of sequencing detection methods, the genomic etiology of GDD and autism spectrum disorder in most patients is largely unknown. CASE REPORT In this study, we describe a 6-year-old girl with GDD, autistic features, and structural brain abnormalities, including a moderate reduction in periventricular white matter and bilateral optic nerve hypoplasia, Chiari malformation type I with normal myelinization. A comprehensive joint whole-genome analysis (WGS) of the proband and her unaffected parents was performed. The trio-WGS analysis identified novel de novo nonsense variants AGO3: c.1324C>T (p.Gln442*) and KHSRP: c.1573C>T (p.Gln525*). These variants have not been reported in gnomAD and published literature. AGO3 and KHSRP are not currently associated with a known phenotype in the Online Mendelian Inheritance in Man (OMIM); however, they may be involved in neuronal development. CONCLUSIONS This report highlights the utility of joint WGS analysis in identifying novel de novo genomic alterations in a patient with the spectrum of phenotypes of GDD and neurodevelopmental disorders. The role of these variants and genes in GDD requires further studies.


Assuntos
Transtorno do Espectro Autista , Deficiências do Desenvolvimento , Humanos , Feminino , Criança , Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Códon sem Sentido , Sequenciamento Completo do Genoma
3.
Cancer Med ; 13(3): e6852, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308423

RESUMO

OBJECTIVE: Turkish genome is underrepresented in large genomic databases. This study aims to evaluate the effect of allele frequency in the Turkish population in determining the clinical utility of germline findings in breast cancer, including invasive lobular carcinoma (ILC), mixed invasive ductal and lobular carcinoma (IDC-L), and ductal carcinoma (DC). METHODS: Two clinic-based cohorts from the Umraniye Research and Training Hospital (URTH) were used in this study: a cohort consisting of 132 women with breast cancer and a non-cancer cohort consisting of 492 participants. The evaluation of the germline landscape was performed by analysis of 27 cancer genes. The frequency and type of variants in the breast cancer cohort were compared to those in the non-cancer cohort to investigate the effect of population genetics. The variant allele frequencies in Turkish Variome and gnomAD were statistically evaluated. RESULTS: The genetic analysis identified 121 variants in the breast cancer cohort (actionable = 32, VUS = 89) and 223 variants in the non-cancer cohort (actionable = 25, VUS = 188). The occurrence of 21 variants in both suggested a possible genetic population effect. Evaluation of allele frequency of 121 variants from the breast cancer cohort showed 22% had a significantly higher value in Turkish Variome compared to gnomAD (p < 0.0001, 95% CI) with a mean difference of 60 times (ranging from 1.37-354.4). After adjusting for variant allele frequency using the ancestry-appropriate database, 6.7% (5/75) of VUS was reclassified to likely benign. CONCLUSION: To our knowledge, this is the first study of population genetic effects in breast cancer subtypes in Turkish women. Our findings underscore the need for a large genomic database representing Turkish population-specific variants. It further highlights the significance of the ancestry-appropriate population database for accurate variant assessment in clinical settings.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Genômica , Oncogenes
4.
Genes (Basel) ; 15(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062725

RESUMO

PURPOSE: An investigation for the co-occurrence of two unrelated genetic disorders of muscular dystrophy and Prader-Willi syndrome (PWS) (OMIM#176270) using joint whole genome sequencing (WGS). METHODS: Trio WGS joint analysis was performed to investigate the genetic etiology in a proband with PWS, prolonged muscular hypotonia associated hyperCKemia, and early-onset obesity. The parents were unaffected. RESULTS: Results showed maternal isodisomy uniparental disomy (UPD) in chromosome 15, expanding from 15q11.2 to 15q22.2, including PWS regions at 15q11.2-15q13. Maternal heterodisomy was detected from 15q22.2 to 15q26.3. A pathogenic variant, NM_000070.3(CAPN3):c.550del (p.Thr184fs), was identified at 15q15.1 in a heterozygous state in the mother that was homozygous in the proband due to maternal isodisomy. CONCLUSION: This is the first study of the concurrent molecular etiology of PWS and calpainopathy (OMIM#253600) in the same patient. This report highlights the utility of joint analysis and the need for the assessment of autosomal recessive disease in regions of isodisomy in patients with complex and unexplained phenotypes.


Assuntos
Calpaína , Cromossomos Humanos Par 15 , Síndrome de Prader-Willi , Dissomia Uniparental , Humanos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/patologia , Calpaína/genética , Feminino , Cromossomos Humanos Par 15/genética , Dissomia Uniparental/genética , Sequenciamento Completo do Genoma , Masculino , Proteínas Musculares
5.
Cancers (Basel) ; 16(5)2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473309

RESUMO

Standard methods of variant assessment in hereditary cancer susceptibility genes are limited by the lack of availability of key supporting evidence. In cancer, information derived from tumors can serve as a useful source in delineating the tumor behavior and the role of germline variants in tumor progression. We have previously demonstrated the value of integrating tumor and germline findings to comprehensively assess germline variants in hereditary cancer syndromes. Building on this work, herein, we present the development and application of the INT2GRATE|HPPGL platform. INT2GRATE (INTegrated INTerpretation of GeRmline And Tumor gEnomes) is a multi-institution oncology consortium that aims to advance the integrated application of constitutional and tumor data and share the integrated variant information in publicly accessible repositories. The INT2GRATE|HPPGL platform enables automated parsing and integrated assessment of germline, tumor, and genetic findings in hereditary paraganglioma-pheochromocytoma syndromes (HPPGLs). Using INT2GRATE|HPPGL, we analyzed 8600 variants in succinate dehydrogenase (SDHx) genes and their associated clinical evidence. The integrated evidence includes germline variants in SDHx genes; clinical genetics evidence: personal and family history of HPPGL-related tumors; tumor-derived evidence: somatic inactivation of SDHx alleles, KIT and PDGFRA status in gastrointestinal stromal tumors (GISTs), multifocal or extra-adrenal tumors, and metastasis status; and immunohistochemistry staining status for SDHA and SDHB genes. After processing, 8600 variants were submitted programmatically from the INT2GRATE|HPPGL platform to ClinVar via a custom-made INT2GRATE|HPPGL variant submission schema and an application programming interface (API). This novel integrated variant assessment and data sharing in hereditary cancers aims to improve the clinical assessment of genomic variants and advance precision oncology.

6.
Front Oncol ; 13: 1284690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38344144

RESUMO

The presence of variants of uncertain significance (VUS) in DNA mismatch repair (MMR) genes leads to uncertainty in the clinical management of patients being evaluated for Lynch syndrome (LS). Currently, there is no platform to systematically use tumor-derived evidence alongside germline data for the assessment of VUS in relation to LS. We developed INT2GRATE (INTegrated INTerpretation of GeRmline And Tumor gEnomes) to leverage information from the tumor genome to inform the potential role of constitutional VUS in MMR genes. INT2GRATE platform has two components: a comprehensive evidence-based decision tree that integrates well-established clinico-genomic data from both the tumor and constitutional genomes to help inform the potential relevance of germline VUS in LS; and a web-based user interface (UI). With the INT2GRATE decision tree operating in the backend, INT2GRATE UI enables the front-end collection of comprehensive clinical genetics and tumor-derived evidence for each VUS to facilitate INT2GRATE assessment and data sharing in the publicly accessible ClinVar database. The performance of the INT2GRATE decision tree was assessed by qualitative retrospective analysis of genomic data from 5057 cancer patients with MMR alterations which included 52 positive control cases. Of 52 positive control cases with LS and pathogenic MMR alterations, 23 had all the testing parameters for the evaluation by INT2GRATE. All these variants were correctly categorized as INT2GRATE POSITIVE. The stringent INT2GRATE decision tree flagged 29 of positive cases by identifying the absence or unusual presentation of specific evidence, highlighting the conservative INT2GRATE logic in favor of a higher degree of confidence in the results. The remaining 99% of cases were correctly categorized as INCONCLUSIVE due to the absence of LS criteria and ≥1 tumor parameters. INT2GRATE is an effective platform for clinical and genetics professionals to collect and assess clinical genetics and complimentary tumor-derived information for each germline VUS in suspected LS patients. Furthermore, INT2GRATE enables the collation of integrated tumor-derived evidence relevant to germline VUS in LS, and sharing them with a large community, a practice that is needed in precision oncology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa