Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Horm Metab Res ; 53(5): 326-334, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33902135

RESUMO

The adrenal gland is important for many physiological and pathophysiological processes, but studies are often restricted by limited availability of sample material. Improved methods for sample preparation are needed to facilitate analyses of multiple classes of adrenal metabolites and macromolecules in a single sample. A procedure was developed for preparation of chromaffin cells, mouse adrenals, and human chromaffin tumors that allows for multi-omics analyses of different metabolites and preservation of native proteins. To evaluate the new procedure, aliquots of samples were also prepared using conventional procedures. Metabolites were analyzed by liquid-chromatography with mass spectrometry or electrochemical detection. Metabolite contents of chromaffin cells and tissues analyzed with the new procedure were similar or even higher than with conventional methods. Catecholamine contents were comparable between both procedures. The TCA cycle metabolites, cis-aconitate, isocitate, and α-ketoglutarate were detected at higher concentrations in cells, while in tumor tissue only isocitrate and potentially fumarate were measured at higher contents. In contrast, in a broad untargeted metabolomics approach, a methanol-based preparation procedure of adrenals led to a 1.3-fold higher number of detected metabolites. The established procedure also allows for simultaneous investigation of adrenal hormones and related enzyme activities as well as proteins within a single sample. This novel multi-omics approach not only minimizes the amount of sample required and overcomes problems associated with tissue heterogeneity, but also provides a more complete picture of adrenal function and intra-adrenal interactions than previously possible.


Assuntos
Glândulas Suprarrenais/química , Glândulas Suprarrenais/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Hormônios/metabolismo , Espectrometria de Massas/métodos , Metabolômica/métodos , Neoplasias das Glândulas Suprarrenais/química , Neoplasias das Glândulas Suprarrenais/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Paraganglioma/química , Paraganglioma/metabolismo , Feocromocitoma/química , Feocromocitoma/metabolismo
2.
J Pathol ; 251(4): 378-387, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32462735

RESUMO

Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours with a hereditary background in over one-third of patients. Mutations in succinate dehydrogenase (SDH) genes increase the risk for PPGLs and several other tumours. Mutations in subunit B (SDHB) in particular are a risk factor for metastatic disease, further highlighting the importance of identifying SDHx mutations for patient management. Genetic variants of unknown significance, where implications for the patient and family members are unclear, are a problem for interpretation. For such cases, reliable methods for evaluating protein functionality are required. Immunohistochemistry for SDHB (SDHB-IHC) is the method of choice but does not assess functionality at the enzymatic level. Liquid chromatography-mass spectrometry-based measurements of metabolite precursors and products of enzymatic reactions provide an alternative method. Here, we compare SDHB-IHC with metabolite profiling in 189 tumours from 187 PPGL patients. Besides evaluating succinate:fumarate ratios (SFRs), machine learning algorithms were developed to establish predictive models for interpreting metabolite data. Metabolite profiling showed higher diagnostic specificity compared to SDHB-IHC (99.2% versus 92.5%, p = 0.021), whereas sensitivity was comparable. Application of machine learning algorithms to metabolite profiles improved predictive ability over that of the SFR, in particular for hard-to-interpret cases of head and neck paragangliomas (AUC 0.9821 versus 0.9613, p = 0.044). Importantly, the combination of metabolite profiling with SDHB-IHC has complementary utility, as SDHB-IHC correctly classified all but one of the false negatives from metabolite profiling strategies, while metabolite profiling correctly classified all but one of the false negatives/positives from SDHB-IHC. From 186 tumours with confirmed status of SDHx variant pathogenicity, the combination of the two methods resulted in 185 correct predictions, highlighting the benefits of both strategies for patient management. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias de Cabeça e Pescoço/diagnóstico , Aprendizado de Máquina , Metabolômica , Paraganglioma/diagnóstico por imagem , Feocromocitoma/diagnóstico , Succinato Desidrogenase/genética , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/patologia , Estudos de Coortes , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imuno-Histoquímica , Mutação , Paraganglioma/genética , Paraganglioma/patologia , Feocromocitoma/genética , Feocromocitoma/patologia
3.
Appl Microbiol Biotechnol ; 101(6): 2291-2303, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27872998

RESUMO

A novel esterase, PpEst, that hydrolyses the co-aromatic-aliphatic polyester poly(1,4-butylene adipate-co-terephthalate) (PBAT) was identified by proteomic screening of the Pseudomonas pseudoalcaligenes secretome. PpEst was induced by the presence of PBAT in the growth media and had predicted arylesterase (EC 3.1.1.2) activity. PpEst showed polyesterase activity on both whole and milled PBAT film releasing terephthalic acid and 4-(4-hydroxybutoxycarbonyl)benzoic acid while end product inhibition by 4-(4-hydroxybutoxycarbonyl)benzoic acid was observed. Modelling of an aromatic polyester mimicking oligomer into the PpEst active site indicated that the binding pocket could be big enough to accommodate large polymers. This is the first report of a PBAT degrading enzyme being identified by proteomic screening and shows that this approach can contribute to the discovery of new polymer hydrolysing enzymes. Moreover, these results indicate that arylesterases could be an interesting enzyme class for identifications of polyesterases.


Assuntos
Proteínas de Bactérias/química , Plásticos Biodegradáveis/metabolismo , Hidrolases de Éster Carboxílico/química , Poliésteres/metabolismo , Pseudomonas pseudoalcaligenes/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plásticos Biodegradáveis/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico , Expressão Gênica , Modelos Moleculares , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Poliésteres/química , Ligação Proteica , Proteômica , Pseudomonas pseudoalcaligenes/genética
4.
J Physiol ; 594(6): 1709-26, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26584508

RESUMO

A better understanding of the inflammatory process associated with renal ischaemia-reperfusion (IR) injury may be clinically important. In this study we examined the role of the kidney in production of inflammatory mediators by analysing renal lymph after 30 min unilateral occlusion of renal artery followed by 120 min reperfusion, as well as the effect of IR on size selectivity for proteins in both glomerular and peritubular capillaries. All measured mediators increased dramatically in renal hilar lymph, plasma and renal cortical tissue samples and returned to control levels after 120 min reperfusion. The responses were differentiated; interleukin-1ß, monocyte chemoattractant protein-1 and leptin were markedly increased in plasma before reperfusion, reflecting an extrarenal response possibly induced by afferent renal nerve activity from the ischaemic kidney. Tumour necrosis factor-α was the only mediator showing elevated lymph-to-plasma ratio following 30 min reperfusion, indicating that most cytokines were released directly into the bloodstream. The IR-induced rise in cytokine levels was paralleled by a significant increase in high molecular weight plasma proteins in both lymph and urine. The latter was shown as a 14- to 166-fold increase in glomerular sieving coefficient of plasma proteins assessed by a novel proteomic approach, and indicated a temporarily reduced size selectivity of both glomerular and peritubular capillaries. Collectively, our data suggest that cytokines from the ischaemic kidney explain most of the rise in plasma concentration, and that the locally produced substances enter the systemic circulation through transport directly to plasma and not via the interstitium to lymph.


Assuntos
Permeabilidade Capilar , Citocinas/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Linfa/metabolismo , Animais , Citocinas/sangue , Feminino , Isquemia/fisiopatologia , Rim/irrigação sanguínea , Ratos , Ratos Wistar , Circulação Renal
5.
Eur J Endocrinol ; 185(1): 179-191, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983135

RESUMO

OBJECTIVE: Within the past decade, important genetic drivers of pheochromocytoma and paraganglioma (PPGLs) development have been identified. The pathophysiological mechanism that translates these alterations into functional autonomy and potentially malignant behavior has not been elucidated in detail. Here we used MALDI-mass spectrometry imaging (MALDI-MSI) of formalin-fixed paraffin-embedded tissue specimens to comprehensively characterize the metabolic profiles of PPGLs. DESIGN AND METHODS: MALDI-MSI was conducted in 344 PPGLs and results correlated with genetic and phenotypic information. We experimentally silenced genetic drivers by siRNA in PC12 cells to confirm their metabolic impact in vitro. RESULTS: Tissue abundance of kynurenine pathway metabolites such as xanthurenic acid was significantly lower (P = 2.35E-09) in the pseudohypoxia pathway cluster 1 compared to PPGLs of the kinase-driven PPGLs cluster 2. Lower abundance of xanthurenic acid was associated with shorter metastasis-free survival (log-rank tests P = 7.96E-06) and identified as a risk factor for metastasis independent of the genetic status (hazard ratio, 32.6, P = 0.002). Knockdown of Sdhb and Vhl in an in vitro model demonstrated that inositol metabolism and sialic acids were similarly modulated as in tumors of the respective cluster. CONCLUSIONS: The present study has identified distinct tissue metabolomic profiles of PPGLs in relation to tumor genotypes. In addition, we revealed significantly altered metabolites in the kynurenine pathway in metastatic PPGLs, which can aid in the prediction of its malignant potential. However, further validation studies will be required to confirm our findings.


Assuntos
Neoplasias das Glândulas Suprarrenais/patologia , Espectrometria de Massas/métodos , Metaboloma , Paraganglioma/patologia , Feocromocitoma/patologia , Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Adulto , Animais , Estudos de Coortes , Progressão da Doença , Feminino , Estudos de Associação Genética , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Metástase Neoplásica , Células PC12 , Paraganglioma/diagnóstico , Paraganglioma/genética , Paraganglioma/metabolismo , Feocromocitoma/diagnóstico , Feocromocitoma/genética , Feocromocitoma/metabolismo , Prognóstico , Ratos , Análise Serial de Tecidos/métodos
6.
Endocr Connect ; 9(2): 122-134, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31910152

RESUMO

Mitotane is the only drug approved for the therapy of adrenocortical carcinoma (ACC). Its clinical use is limited by the occurrence of relapse during therapy. To investigate the underlying mechanisms in vitro, we here generated mitotane-resistant cell lines. After long-term pulsed treatment of HAC-15 human adrenocortical carcinoma cells with 70 µM mitotane, we isolated monoclonal cell populations of treated cells and controls and assessed their respective mitotane sensitivities by MTT assay. We performed exome sequencing and electron microscopy, conducted gene expression microarray analysis and determined intracellular lipid concentrations in the presence and absence of mitotane. Clonal cell lines established after pulsed treatment were resistant to mitotane (IC50 of 102.2 ± 7.3 µM (n = 12) vs 39.4 ± 6.2 µM (n = 6) in controls (biological replicates, mean ± s.d., P = 0.0001)). Unlike nonresistant clones, resistant clones maintained normal mitochondrial and nucleolar morphology during mitotane treatment. Resistant clones largely shared structural and single nucleotide variants, suggesting a common cell of origin. Resistance depended, in part, on extracellular lipoproteins and was associated with alterations in intracellular lipid homeostasis, including levels of free cholesterol, as well as decreased steroid production. By gene expression analysis, resistant cells showed profound alterations in pathways including steroid metabolism and transport, apoptosis, cell growth and Wnt signaling. These studies establish an in vitro model of mitotane resistance in ACC and point to underlying molecular mechanisms. They may enable future studies to overcome resistance in vitro and improve ACC treatment in vivo.

7.
J Biotechnol ; 235: 132-8, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26707808

RESUMO

Enzyme catalyzed processes are increasingly complementing chemical manufacturing as new enzymes are being discovered. Although, many industrially applied biocatalysts have been identified by functional screenings technological advances in the omics fields have created a different path to access novelty. Here we describe how omics technologies, especially proteomics and transcriptomics, can complement each other in the aim of finding new enzymatic functions. Special emphasis is laid on how mRNA sequencing Zcan improve proteomic experiments by allowing the generation of high quality protein sequence databases, which subsequently facilitates protein identification.


Assuntos
Enzimas , Perfilação da Expressão Gênica/métodos , Proteômica/métodos , RNA Mensageiro , Análise de Sequência de RNA/métodos , Biotecnologia , Bases de Dados de Ácidos Nucleicos , Enzimas/genética , Enzimas/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa