Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 169(4): 85, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546898

RESUMO

The fishing and aquaculture industry is vital for global food security, yet viral diseases can result in mass fish die-off events. Determining the viromes of traditionally understudied species, such as fish, enhances our understanding of the global virosphere and the factors that influence virome composition and disease emergence. Very little is known about the viruses present in New Zealand's native fish species, including the shortfin eel (Anguilla australis) and the longfin eel (Anguilla dieffenbachii), both of which are fished culturally by Maori (the indigenous population of New Zealand) and commercially. Through a total RNA metatranscriptomic analysis of longfin and shortfin eels across three different geographic locations in the South Island of New Zealand, we aimed to determine whether viruses had jumped between the two eel species and whether eel virome composition was impacted by life stage, species, and geographic location. We identified nine viral species spanning eight different families, thereby enhancing our understanding of eel virus diversity in New Zealand and the host range of these viral families. Viruses of the family Flaviviridae (genus Hepacivirus) were widespread and found in both longfin and shortfin eels, indicative of cross-species transmission or virus-host co-divergence. Notably, both host specificity and geographic location appeared to influence eel virome composition, highlighting the complex interaction between viruses, hosts, and their ecosystems. This study broadens our understanding of viromes in aquatic hosts and highlights the importance of gaining baseline knowledge of fish viral abundance and diversity, particularly in aquatic species that are facing population declines.


Assuntos
Anguilla , Rhabdoviridae , Animais , Anguilla/virologia , Ecossistema , Geografia , Nova Zelândia
2.
BMC Ecol Evol ; 24(1): 81, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872095

RESUMO

BACKGROUND: New Zealand is home to over 120 native endemic species of skinks and geckos that radiated over the last 20-40 million years, likely driven by the exploitation of diverse habitats formed during the Miocene. The recent radiation of animal hosts may facilitate cross-species virus transmission, likely reflecting their close genetic relationships and therefore relatively low barriers for viruses to emerge in new hosts. Conversely, as animal hosts adapt to new niches, even within specific geographic locations, so too could their viruses. Consequently, animals that have niche-specialised following radiations may be expected to harbour genetically distinct viruses. Through a metatranscriptomic analysis of eight of New Zealand's native skink and gecko species, as well as the only introduced lizard species, the rainbow skink (Lampropholis delicata), we aimed to reveal the diversity of viruses in these hosts and determine whether and how the radiation of skinks and geckos in New Zealand has impacted virus diversity and evolution. RESULTS: We identified a total of 15 novel reptilian viruses spanning 11 different viral families, across seven of the nine species sampled. Notably, we detected no viral host-switching among the native animals analysed, even between those sampled from the same geographic location. This is compatible with the idea that host speciation has likely resulted in isolated, niche-constrained viral populations that have prevented cross-species transmission. Using a protein structural similarity-based approach, we further identified a highly divergent bunya-like virus that potentially formed a new family within the Bunyavirales. CONCLUSIONS: This study has broadened our understanding of reptilian viruses within New Zealand and illustrates how niche adaptation may limit viral-host interactions.


Assuntos
Lagartos , Animais , Lagartos/virologia , Nova Zelândia , Vírus/isolamento & purificação , Vírus/genética , Filogenia
3.
Virus Evol ; 10(1): veae008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379777

RESUMO

The lesser short-tailed bat (Mystacina tuberculata) and the long-tailed bat (Chalinolobus tuberculatus) are Aotearoa New Zealand's only native extant terrestrial mammals and are believed to have migrated from Australia. Long-tailed bats arrived in New Zealand an estimated two million years ago and are closely related to other Australian bat species. Lesser short-tailed bats, in contrast, are the only extant species within the Mystacinidae and are estimated to have been living in isolation in New Zealand for the past 16-18 million years. Throughout this period of isolation, lesser short-tailed bats have become one of the most terrestrial bats in the world. Through a metatranscriptomic analysis of guano samples from eight locations across New Zealand, we aimed to characterise the viromes of New Zealand's bats and determine whether viruses have jumped between these species over the past two million years. High viral richness was observed among long-tailed bats with viruses spanning seven different viral families. In contrast, no bat-specific viruses were identified in lesser short-tailed bats. Both bat species harboured an abundance of likely dietary- and environment-associated viruses. We also identified alphacoronaviruses in long-tailed bat guano that had previously been identified in lesser short-tailed bats, suggesting that these viruses had jumped the species barrier after long-tailed bats migrated to New Zealand. Of note, an alphacoronavirus species discovered here possessed a complete genome of only 22,416 nucleotides with entire deletions or truncations of several non-structural proteins, thereby representing what may be the shortest genome within the Coronaviridae identified to date. Overall, this study has revealed a diverse range of novel viruses harboured by New Zealand's only native terrestrial mammals, in turn expanding our understanding of bat viral dynamics and evolution globally.

4.
Virology ; 575: 43-53, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058085

RESUMO

Tuatara (Sphenodon punctatus) are one of the most phylogenetically isolated vertebrate species and provide a unique host system to study virus evolution. While the tuatara genome, sequenced in 2020, revealed many endogenous viral elements, we know little of the exogenous viruses that infect tuatara. We performed a metatranscriptomics study of tuatara cloaca samples from a wild population on Takapourewa (Stephens Island), Aotearoa New Zealand. From these data we identified 49 potentially novel viral species that spanned 19 RNA viral families and/or orders, the vast majority (48) of which were likely dietary-related. Notably, using a protein structure homology search, we identified a highly divergent novel virus within the Picornaviridae which may directly infect tuatara. Additionally, two endogenous tuatara adintoviruses were characterised that exhibited long-term viral-host co-divergence. Overall, our results indicate that the tuatara cloacal virome is highly diverse, likely due to a large number of dietary-related viruses.


Assuntos
Cloaca , Vírus , Animais , Dieta , Humanos , RNA/metabolismo , Répteis/genética , Répteis/metabolismo , Viroma , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa