RESUMO
Aqueous extracts derived from flowers stimulate germination, secondary conidiation, and appressorial formation of various latent fruit rotting fungi. Even raindrops passing over flowers accumulate sufficient activity to influence the infectivity of fruit rotting fungi. Using a spore germination bioassay, high levels of bioactivity were found in chloroform extracts from plant tissues, implicating the nonpolar components of the cuticle. The fatty acid (FA) and fatty acid methyl ester (FAME) composition (C9-C20) of blueberry and cranberry tissues as well as aqueous flower extracts were characterized using a gas chromatography-mass spectrometry (GC-MS) method. The FAs and FAMEs found in the plant extracts were then tested for bioactivity using a spore germination bioassay. The C16:0 and C18:2 FAs and FAMEs, as well as the C18:0 FAME and the C20:0 FA, all stimulated appressorial formation while the C10:0 FA stimulated secondary conidiation. The C10:0 and C16:0 FAs were the only two bioactive components also identified from the aqueous floral extracts of both blueberry and cranberry and are therefore considered as contributors to the bioactivity observed in these extracts. The aqueous extracts from surfaces other than flowers showed little or no activity, and it is speculated that the movement of FAs may be related to the level of polymerization and cutin polyester development in flowers versus other plant organs. This study highlights the importance of the bloom period for infection and that the apparent effects on host susceptibility may therefore depend on the availability of specific FAs or combinations thereof.
Assuntos
Colletotrichum , Ácidos Graxos , Ácidos Graxos/análise , Doenças das Plantas , Plantas , ÁguaRESUMO
Floral extracts (FEs) can influence the infectivity and epidemiology of fruit infecting Colletotrichum species. In this study, Colletotrichum fioriniae responded to cranberry FEs with an increased rate and magnitude of secondary conidiation and appressorium formation. Four other cranberry fruit rotting species also showed an increased rate of germination in the presence of FEs. However, increased appressorium formation was observed only in the latent pathogens Coleophoma cylindrospora, Colletotrichum fructivorum, and Colletotrichum fioriniae. Two other fruit rotting species, Phyllosticta vaccinii and Allantophomopsis lycopodina, did not form appressoria while secondary conidiation was only seen with the Colletotrichum spp. When conidia of Colletotrichum fioriniae were inoculated in the presence of FE, the incidence of disease was greater on cranberry fruit. Conidia of this species also formed appressoria at lower than expected temperatures in the presence of FE. Dissection of the flowers revealed that the corolla (with stamens and stigma) was the most stimulatory part of the inflorescence. These observations suggest an important and ephemeral role of flowers in the epidemiology of fruit rot. Stimulatory floral signals were readily detected using a conidial germination bioassay and rainwater samples collected from the plant canopy throughout the growing season confirmed that bioactivity was highest during the bloom period, and declined as the fruit developed. The data presented show that floral signals can alter the growth patterns of a larger than previously observed range of fungi and the mobility of floral signals within the canopy implicates these phenology-specific cues in modifying the disease cycles of numerous plant pathogens.
Assuntos
Colletotrichum , Vaccinium macrocarpon , Flores , Frutas , Doenças das Plantas , Extratos VegetaisRESUMO
Blueberry anthracnose, caused by Colletotrichum fioriniae, is a pre- and postharvest disease of cultivated highbush blueberry (Vaccinium corymbosum). During disease development, the pathogen undergoes several lifestyle changes during host colonization, including epiphytic, quiescent, and necrotrophic phases. It is not clear, however, what if any host signals alter the pattern of colonization during the initial epiphytic phase and infection. This research investigated the role of blueberry floral extracts (FE) on fungal development. Results show that FE significantly increased both the quantity and rate of secondary conidiation and appressorial formation in vitro, suggesting that floral components could decrease the minimum time required for infection. Activity of FE was readily detected in water collected from field samples, where secondary conidiation and appressorial formation decreased as rainwater collections were further removed from flowers. A comparison of FE from four blueberry cultivars with different levels of field susceptibility revealed that appressorial formation but not secondary conidiation significantly increased with the FE from susceptible cultivars versus resistant cultivars. Inoculum supplemented with FE produced higher levels of disease on ripe blueberry fruit as compared with inoculum with water only. Flowers from other ericaceous species were found to also induce secondary conidiation and appressorial formation of C. fioriniae. This research provides strong evidence that flowers can contribute substantially to the infection process of C. fioriniae, signifying the importance of the bloom period for developing effective disease management strategies.
Assuntos
Mirtilos Azuis (Planta)/química , Colletotrichum/patogenicidade , Flores/química , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Esporos FúngicosRESUMO
To accurately monitor the phenology of the bloom period and the temporal dynamics of floral chemical cues on fungal fruit rotting pathogens, floral extraction methods and coverslip bioassays were developed utilizing Colletotrichum fioriniae. In blueberry and cranberry, this pathogen is optimally controlled by applying fungicides during the bloom period because of the role flowers play in the initial stages of infection. The protocol detailed here describes how floral extracts (FE) were obtained using water-, chloroform-, and field rainwater-based methods for later use in corresponding glass coverslip bioassays. Each FE served to provide a different set of information: response of C. fioriniae to mobilized floral chemical cues in water (water-based), pathogen response to flower and fruit surface waxes (chloroform-based), and field-based monitoring of collected floral rainwater, moving in vitro observations to an agricultural setting. The FE is broadly described as either water- or chloroform-based, with an appropriate bioassay described to compensate for the inherent differences between these two materials. Rainwater that had run off flowers was collected in unique devices for each crop, alluding to the flexibility and application of this approach for other crop systems. The bioassays are quick, inexpensive, simple, and provide the ability to generate spatiotemporal and site-specific information about the presence of stimulatory floral compounds from various sources. This information will ultimately better inform disease management strategies, as FE decrease the time needed for infection to occur, thus providing insight into changing risks for pathogen infection over the growing season.