Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Chem ; 398(2): 277-287, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27508963

RESUMO

Poly(N-vinyl pyrrolidone)-based-nanogels (NGs), produced by e-beam irradiation, are conjugated with monoclonal antibodies (mAb) for active targeting purposes. The uptake of immuno-functionalized nanogels is tested in an endothelial cell line, ECV304, using confocal and epifluorescence microscopy. Intracellular localization studies reveal a faster uptake of the immuno-nanogel conjugate with respect to the 'bare' nanogel. The specific internalization pathway of these immuno-nanogels is clarified by selective endocytosis inhibition experiments, flow cytometry and confocal microscopy. Active targeting ability is also verified by conjugating a monoclonal antibody which recognizes the αvß3 integrin on activated endothelial cells. Epifluorescence images of the 'wound healing assay' on ECV304 cells provide evidence of nanogels localization only in the target cells. Therefore, the immuno-nanogels produced have the potential to recognize specific cell types in heterogeneous systems, which makes them promising candidates for targeted drug delivery applications.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Portadores de Fármacos/química , Nanoestruturas/química , Anticorpos Monoclonais/metabolismo , Transporte Biológico , Linhagem Celular , Géis , Humanos , Povidona/química
2.
Polymers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810454

RESUMO

There is a possibility of obtaining xylitol-based elastomers sharing common characteristics of biodegradability, thermal stability, and elastomeric behavior by using monomers with different chain-lengths. Therefore, we have synthesized eight elastomers using a combination of four different diols (ethanediol, 1.3-propanediol, 1.4-buanediol, and 1.5-pentanediol) and two different dicarboxylic acids (succinic acid and adipic acid). The obtained materials were further modified by performing e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested by DSC, DMTA, TGA, tensile tests, gel fraction determination, hydrolytic and enzymatic degradation tests, 1H NMR and 13C NMR and FTIR.

3.
Materials (Basel) ; 14(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918460

RESUMO

Poly(xylitol dicarboxylate-co-diol dicarboxylate) elastomers can by synthesized using wide variety of monomers with different chain lengths. Obtained materials are all biodegradable, thermally stable elastomers, but their specific properties like glass transition temperature, degradation susceptibility, and mechanical moduli can be tailored for a specific application. Therefore, we synthesized eight elastomers using a combination of two dicarboxylic acids, namely suberic and sebacic acid, and four different diols, namely ethanediol, 1,3-propanediol, 1,4-buanediol, and 1,5-pentanediol. Materials were further modified by e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested using tensile tests, gel fraction determination, 1H NMR, and 13C NMR. Thermal properties were tested by Differential Scanning Calorimetry (DSC), Dynamic Thermomechanical Analysis (DMTA) and Thermogravimetric Analysis (TGA). Degradation susceptibility to both enzymatic and hydrolytic degradation was also determined.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa