Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Clin Genet ; 103(1): 45-52, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36175384

RESUMO

Sulfate is the fourth most abundant anion in human plasma but is not measured in clinical practice and little is known about the consequences of sulfate deficiency. Nevertheless, sulfation plays an essential role in the modulation of numerous compounds, including proteoglycans and steroids. We report the first patient with a homozygous loss-of-function variant in the SLC13A1 gene, encoding a renal and intestinal sulfate transporter, which is essential for maintaining plasma sulfate levels. The homozygous (Arg12Ter) variant in SLC13A1 was found by exome sequencing performed in a patient with unexplained skeletal dysplasia. The main clinical features were enlargement of joints and spondylo-epi-metaphyseal radiological abnormalities in early childhood, which improved with age. In addition, autistic features were noted. We found profound hyposulfatemia due to complete loss of renal sulfate reabsorption. Cholesterol sulfate was reduced. Intravenous N-acetylcysteine administration temporarily restored plasma sulfate levels. We conclude that loss of the SLC13A1 gene leads to profound hypersulfaturia and hyposulfatemia, which is mainly associated with abnormal skeletal development, possibly predisposing to degenerative bone and joint disease. The diagnosis might be easily missed and more frequent.


Assuntos
Sulfatos , Pré-Escolar , Humanos , Transportadores de Sulfato/genética
2.
J Inherit Metab Dis ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37455357

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare neurometabolic disorder caused by disruption of the gamma-aminobutyric acid (GABA) pathway. A more detailed understanding of its pathophysiology, beyond the accumulation of GABA and gamma-hydroxybutyric acid (GHB), will increase our understanding of the disease and may support novel therapy development. To this end, we compared biochemical body fluid profiles from SSADHD patients with controls using next-generation metabolic screening (NGMS). Targeted analysis of NGMS data from cerebrospinal fluid (CSF) showed a moderate increase of aspartic acid, glutaric acid, glycolic acid, 4-guanidinobutanoic acid, and 2-hydroxyglutaric acid, and prominent elevations of GHB and 4,5-dihydroxyhexanoic acid (4,5-DHHA) in SSADHD samples. Remarkably, the intensities of 4,5-DHHA and GHB showed a significant positive correlation in control CSF, but not in patient CSF. In an established zebrafish epilepsy model, 4,5-DHHA showed increased mobility that may reflect limited epileptogenesis. Using untargeted metabolomics, we identified 12 features in CSF with high biomarker potential. These had comparable increased fold changes as GHB and 4,5-DHHA. For 10 of these features, a similar increase was found in plasma, urine and/or mouse brain tissue for SSADHD compared to controls. One of these was identified as the novel biomarker 4,5-dihydroxyheptanoic acid. The intensities of selected features in plasma and urine of SSADHD patients positively correlated with the clinical severity score of epilepsy and psychiatric symptoms of those patients, and also showed a high mutual correlation. Our findings provide new insights into the (neuro)metabolic disturbances in SSADHD and give leads for further research concerning SSADHD pathophysiology.

3.
Brain ; 145(1): 105-118, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34398223

RESUMO

Metachromatic leukodystrophy is a lethal metabolic leukodystrophy, with emerging treatments for early disease stages. Biomarkers to measure disease activity are required for clinical assessment and treatment follow-up. This retrospective study compared neurofilament light chain and glial fibrillary acidic protein (GFAP) levels in CSF (n = 11) and blood (n = 92) samples of 40 patients with metachromatic leukodystrophy (aged 0-42 years) with 38 neurologically healthy children (aged 0-17 years) and 38 healthy adults (aged 18-45 years), and analysed the associations between these levels with clinical phenotype and disease evolution in untreated and transplanted patients. Metachromatic leukodystrophy subtype was determined based on the (expected) age of symptom onset. Disease activity was assessed by measuring gross motor function deterioration and brain MRI. Longitudinal analyses with measurements up to 23 years after diagnosis were performed using linear mixed models. CSF and blood neurofilament light chain and GFAP levels in paediatric controls were negatively associated with age (all P < 0.001). Blood neurofilament light chain level at diagnosis (median, interquartile range; picograms per millilitre) was significantly increased in both presymptomatic (14.7, 10.6-56.7) and symptomatic patients (136, 40.8-445) compared to controls (5.6, 4.5-7.1), and highest among patients with late-infantile (456, 201-854) or early-juvenile metachromatic leukodystrophy (291.0, 104-445) and those ineligible for treatment based on best practice (291, 57.4-472). GFAP level (median, interquartile range; picogram per millilitre) was only increased in symptomatic patients (591, 224-1150) compared to controls (119, 78.2-338) and not significantly associated with treatment eligibility (P = 0.093). Higher blood neurofilament light chain and GFAP levels at diagnosis were associated with rapid disease progression in late-infantile (P = 0.006 and P = 0.051, respectively) and early-juvenile patients (P = 0.048 and P = 0.039, respectively). Finally, blood neurofilament light chain and GFAP levels decreased during follow-up in untreated and transplanted patients but remained elevated compared with controls. Only neurofilament light chain levels were associated with MRI deterioration (P < 0.001). This study indicates that both proteins may be considered as non-invasive biomarkers for clinical phenotype and disease stage at clinical assessment, and that neurofilament light chain might enable neurologists to make better informed treatment decisions. In addition, neurofilament light chain holds promise assessing treatment response. Importantly, both biomarkers require paediatric reference values, given that their levels first decrease before increasing with advancing age.


Assuntos
Leucodistrofia Metacromática , Biomarcadores , Criança , Proteína Glial Fibrilar Ácida , Humanos , Filamentos Intermediários , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/terapia , Imageamento por Ressonância Magnética , Proteínas de Neurofilamentos , Estudos Retrospectivos
4.
J Inherit Metab Dis ; 45(6): 1094-1105, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053831

RESUMO

Classical galactosemia (CG) is one of the more frequent inborn errors of metabolism affecting approximately 1:40.000 people. Despite a life-saving galactose-restricted diet, patients develop highly variable long-term complications including intellectual disability and movement disorders. The pathophysiology of these complications is still poorly understood and development of new therapies is hampered by a lack of valid prognostic biomarkers. Multi-omics approaches may discover new biomarkers and improve prediction of patient outcome. In the current study, (semi-)targeted mass-spectrometry based metabolomics and lipidomics were performed in erythrocytes of 40 patients with both classical and variant phenotypes and 39 controls. Lipidomics did not show any significant changes or deficiencies. The metabolomics analysis revealed that CG does not only compromise the Leloir pathway, but also involves other metabolic pathways including glycolysis, the pentose phosphate pathway, and nucleotide metabolism in the erythrocyte. Moreover, the energy status of the cell appears to be compromised, with significantly decreased levels of ATP and ADP. This possibly is the consequence of two different mechanisms: impaired formation of ATP from ADP possibly due to reduced flux though the glycolytic pathway and trapping of phosphate in galactose-1-phosphate (Gal-1P) which accumulates in CG. Our findings are in line with the current notion that the accumulation of Gal-1P plays a key role in the pathophysiology of CG not only by depletion of intracellular phosphate levels but also by decreasing metabolite abundance downstream in the glycolytic pathway and affecting other pathways. New therapeutic options for CG could be directed towards the restoration of intracellular phosphate homeostasis.


Assuntos
Galactosemias , Humanos , Galactosemias/genética , Galactose/metabolismo , Redes e Vias Metabólicas , Biomarcadores/metabolismo , Fosfatos , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
5.
Mol Genet Metab ; 130(3): 172-178, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402538

RESUMO

Deficiency of succinate semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1 (ALDH5A1), OMIM 271980, 610045), the second enzyme of GABA degradation, represents a rare autosomal-recessively inherited disorder which manifests metabolically as gamma-hydroxybutyric aciduria. The neurological phenotype includes intellectual disability, autism spectrum, epilepsy and sleep and behavior disturbances. Approximately 70 variants have been reported in the ALDH5A1 gene, half of them being missense variants. In this study, 34 missense variants, of which 22 novel, were evaluated by in silico analyses using PolyPhen2 and SIFT prediction tools. Subsequently, the effect of these variants on SSADH activity was studied by transient overexpression in HEK293 cells. These studies showed severe enzymatic activity impairment for 27 out of 34 alleles, normal activity for one allele and a broad range of residual activities (25 to 74%) for six alleles. To better evaluate the alleles that showed residual activity above 25%, we generated an SSADH-deficient HEK293-Flp-In cell line using CRISPR-Cas9, in which these alleles were stably expressed. This model proved essential in the classification as deficient for one out of the seven studied alleles. For 8 out of 34 addressed alleles, there were discrepant results among the used prediction tools, and/or in correlating the results of the prediction tools with the functional data. In case of diagnostic urgency of missense alleles, we propose the use of the transient transfection model for confirmation of their effect on the SSADH catalytic function, since this model resulted in fast and robust functional characterization for the majority of the tested variants. In selected cases, stable transfections can be considered and may prove valuable.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/patologia , Deficiências do Desenvolvimento/patologia , Mutação de Sentido Incorreto , Succinato-Semialdeído Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Simulação por Computador , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Células HEK293 , Humanos , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
6.
Clin Chem Lab Med ; 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33554568

RESUMO

The in vitro diagnostic medical devices regulation (IVDR) will take effect in May 2022. This regulation has a large impact on both the manufacturers of in vitro diagnostic medical devices (IVD) and clinical laboratories. For clinical laboratories, the IVDR poses restrictions on the use of laboratory developed tests (LDTs). To provide a uniform interpretation of the IVDR for colleagues in clinical practice, the IVDR Task Force was created by the scientific societies of laboratory specialties in the Netherlands. A guidance document with explanations and interpretations of relevant passages of the IVDR was drafted to help laboratories prepare for the impact of this new legislation. Feedback from interested parties and stakeholders was collected and used to further improve the document. Here we would like to present our approach to our European colleagues and inform them about the impact of the IVDR and, importantly we would like to present potentially useful approaches to fulfill the requirements of the IVDR for LDTs.

7.
Am J Hum Genet ; 98(6): 1235-1242, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259054

RESUMO

Whole-exome sequencing (WES) is increasingly being utilized to diagnose individuals with undiagnosed disorders. Developmental delay and short stature are common clinical indications for WES. We performed WES in three families, using proband-parent trios and two additional affected siblings. We identified a syndrome due to an autosomal-recessively inherited deficiency of transketolase, encoded by TKT, on chromosome 3p21. Our series includes three families with a total of five affected individuals, ranging in age from 4 to 25 years. Two families of Ashkenazi Jewish ancestry were homozygous for an 18 base pair in-frame insertion in TKT. The third family was compound heterozygous for nonsense and missense variants in TKT. All affected individuals had short stature and were developmentally delayed. Congenital heart defects were noted in four of the five affected individuals, and there was a history of chronic diarrhea and cataracts in the older individuals with the homozygous 18 base pair insertion. Enzymatic testing confirmed significantly reduced transketolase activity. Elevated urinary excretion of erythritol, arabitol, ribitol, and pent(ul)ose-5-phosphates was detected, as well as elevated amounts of erythritol, arabitol, and ribitol in the plasma of affected individuals. Transketolase deficiency reduces NADPH synthesis and nucleic acid synthesis and cell division and could explain the problems with growth. NADPH is also critical for maintaining cerebral glutathione, which might contribute to the neurodevelopmental delays. Transketolase deficiency is one of a growing list of inborn errors of metabolism in the non-oxidative part of the pentose phosphate pathway.


Assuntos
Deficiências do Desenvolvimento/etiologia , Nanismo/etiologia , Cardiopatias Congênitas/etiologia , Mutação/genética , Transcetolase/genética , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Nanismo/metabolismo , Nanismo/patologia , Feminino , Glutationa/metabolismo , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Humanos , Masculino , NADP/metabolismo , Linhagem , Síndrome , Adulto Jovem
8.
J Inherit Metab Dis ; 42(1): 147-158, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30740741

RESUMO

BACKGROUND: Transaldolase deficiency (TALDO-D) is a rare autosomal recessive inborn error of the pentose phosphate pathway. Since its first description in 2001, several case reports have been published, but there has been no comprehensive overview of phenotype, genotype, and phenotype-genotype correlation. METHODS: We performed a retrospective questionnaire and literature study of clinical, biochemical, and molecular data of 34 patients from 25 families with proven TALDO-D. In some patients, endocrine abnormalities have been found. To further evaluate these abnormalities, we performed biochemical investigations on blood of 14 patients. RESULTS AND CONCLUSIONS: Most patients (n = 22) had an early-onset presentation (prenatally or before 1 month of age); 12 patients had a late-onset presentation (3 months to 9 years). Main presenting symptoms were intrauterine growth restriction, dysmorphic facial features, congenital heart disease, anemia, thrombocytopenia, and hepato(spleno)megaly. An older sib of two affected patients was asymptomatic until the age of 9 years, and only after molecular diagnosis was hepatomegaly noted. In some patients, there was gonadal dysfunction with low levels of testosterone and secondary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) abnormalities later in life. This overview provides information that can be helpful for managing patients and counseling families regarding prognosis. Diagnostic guidelines, possible genotype-phenotype correlations, treatment options, and pathophysiological disease mechanisms are proposed.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Células Endócrinas/metabolismo , Hormônios/metabolismo , Transaldolase/deficiência , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Estudos Retrospectivos , Inquéritos e Questionários , Transaldolase/genética , Transaldolase/metabolismo
9.
Metab Brain Dis ; 34(2): 557-563, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30637540

RESUMO

D-glycerate 2 kinase (DGK) is an enzyme that mediates the conversion of D-glycerate, an intermediate metabolite of serine and fructose metabolism, to 2-phosphoglycerate. Deficiency of DGK leads to accumulation of D-glycerate in various tissues and its massive excretion in urine. D-glyceric aciduria (DGA) is an autosomal recessive metabolic disorder caused by mutations in the GLYCTK gene. The clinical spectrum of DGA is highly variable, ranging from severe progressive infantile encephalopathy to a practically asymptomatic condition. We describe a male patient from a consanguineous Arab family with infantile onset of DGA, characterized by profound psychomotor retardation, progressive microcephaly, intractable seizures, cortical blindness and deafness. Consecutive brain MR imaging showed an evolving brain atrophy, thinning of the corpus callosum and diffuse abnormal white matter signals. Whole exome sequencing identified the homozygous missense variant in the GLYCTK gene [c.455 T > C, NM_145262.3], which affected a highly conserved leucine residue located at a domain of yet unknown function of the enzyme [p.Leu152Pro, NP_660305]. In silico analysis of the variant supported its pathogenicity. A review of the 15 previously reported patients, together with the current one, confirms a clear association between DGA and severe neurological impairment. Yet, future studies of additional patients with DGA are required to better understand the clinical phenotype and pathogenesis.


Assuntos
Encefalopatias/metabolismo , Epilepsia/metabolismo , Hiperoxalúria Primária/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Encefalopatias/genética , Criança , Epilepsia/diagnóstico , Epilepsia/genética , Ácidos Glicéricos/metabolismo , Humanos , Hiperoxalúria Primária/genética , Lactente , Masculino , Mutação/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Espasmos Infantis/genética , Espasmos Infantis/metabolismo
10.
Genet Med ; 19(2): 256-263, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28055022

RESUMO

Disclaimer: These ACMG Standards and Guidelines are intended as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of others that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, clinical laboratory geneticists should apply their professional judgment to the specific circumstances presented by the patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Cerebral creatine deficiency syndromes are neurometabolic conditions characterized by intellectual disability, seizures, speech delay, and behavioral abnormalities. Several laboratory methods are available for preliminary and confirmatory diagnosis of these conditions, including measurement of creatine and related metabolites in biofluids using liquid chromatography-tandem mass spectrometry or gas chromatography-mass spectrometry, enzyme activity assays in cultured cells, and DNA sequence analysis. These guidelines are intended to standardize these procedures to help optimize the diagnosis of creatine deficiency syndromes. While biochemical methods are emphasized, considerations for confirmatory molecular testing are also discussed, along with variables that influence test results and interpretation.Genet Med 19 2, 256-263.


Assuntos
Amidinotransferases/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas Congênitas/genética , Creatina/deficiência , Creatina/metabolismo , Guanidinoacetato N-Metiltransferase/deficiência , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Transtornos dos Movimentos/congênito , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Proteínas Repressoras/genética , Distúrbios da Fala/genética , Amidinotransferases/sangue , Amidinotransferases/líquido cefalorraquidiano , Amidinotransferases/genética , Amidinotransferases/urina , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/líquido cefalorraquidiano , Erros Inatos do Metabolismo dos Aminoácidos/urina , Encefalopatias Metabólicas Congênitas/sangue , Encefalopatias Metabólicas Congênitas/líquido cefalorraquidiano , Encefalopatias Metabólicas Congênitas/urina , Técnicas de Laboratório Clínico/métodos , Creatina/sangue , Creatina/líquido cefalorraquidiano , Creatina/genética , Creatina/urina , Deficiências do Desenvolvimento/sangue , Deficiências do Desenvolvimento/líquido cefalorraquidiano , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/urina , Testes Genéticos/normas , Genética Médica/normas , Genômica , Guanidinoacetato N-Metiltransferase/sangue , Guanidinoacetato N-Metiltransferase/líquido cefalorraquidiano , Guanidinoacetato N-Metiltransferase/genética , Guanidinoacetato N-Metiltransferase/urina , Guias como Assunto , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/líquido cefalorraquidiano , Deficiência Intelectual/urina , Transtornos do Desenvolvimento da Linguagem/sangue , Transtornos do Desenvolvimento da Linguagem/líquido cefalorraquidiano , Transtornos do Desenvolvimento da Linguagem/urina , Deficiência Intelectual Ligada ao Cromossomo X/sangue , Deficiência Intelectual Ligada ao Cromossomo X/líquido cefalorraquidiano , Deficiência Intelectual Ligada ao Cromossomo X/urina , Transtornos dos Movimentos/sangue , Transtornos dos Movimentos/líquido cefalorraquidiano , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/urina , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/sangue , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/líquido cefalorraquidiano , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/urina , Proteínas Repressoras/sangue , Proteínas Repressoras/líquido cefalorraquidiano , Proteínas Repressoras/urina , Distúrbios da Fala/sangue , Distúrbios da Fala/líquido cefalorraquidiano
11.
Clin Chem ; 61(5): 760-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25759465

RESUMO

BACKGROUND: Urinary concentrations of creatine and guanidinoacetic acid divided by creatinine are informative markers for cerebral creatine deficiency syndromes (CDSs). The renal excretion of these substances varies substantially with age and sex, challenging the sensitivity and specificity of postanalytical interpretation. METHODS: Results from 155 patients with CDS and 12 507 reference individuals were contributed by 5 diagnostic laboratories. They were binned into 104 adjacent age intervals and renormalized with Box-Cox transforms (Ξ). Estimates for central tendency (µ) and dispersion (σ) of Ξ were obtained for each bin. Polynomial regression analysis was used to establish the age dependence of both µ[log(age)] and σ[log(age)]. The regression residuals were then calculated as z-scores = {Ξ - µ[log(age)]}/σ[log(age)]. The process was iterated until all z-scores outside Tukey fences ±3.372 were identified and removed. Continuous percentile charts were then calculated and plotted by retransformation. RESULTS: Statistically significant and biologically relevant subgroups of z-scores were identified. Significantly higher marker values were seen in females than males, necessitating separate reference intervals in both adolescents and adults. Comparison between our reconstructed reference percentiles and current standard age-matched reference intervals highlights an underlying risk of false-positive and false-negative events at certain ages. CONCLUSIONS: Disease markers depending strongly on covariates such as age and sex require large numbers of reference individuals to establish peripheral percentiles with sufficient precision. This is feasible only through collaborative data sharing and the use of appropriate statistical methods. Broad application of this approach can be implemented through freely available Web-based software.


Assuntos
Fatores Etários , Biomarcadores/urina , Encefalopatias/urina , Creatina/deficiência , Padrões de Referência , Fatores Sexuais , Creatina/urina , Feminino , Humanos , Masculino , Modelos Biológicos
12.
BMC Genet ; 16: 13, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25887987

RESUMO

BACKGROUND: Studying the survival of yeast in stationary phase, known as chronological lifespan, led to the identification of molecular ageing factors conserved from yeast to higher organisms. To identify functional interactions among yeast chronological ageing genes, we conducted a haploproficiency screen on the basis of previously identified long-living mutants. For this, we created a library of heterozygous Saccharomyces cerevisiae double deletion strains and aged them in a competitive manner. RESULTS: Stationary phase survival was prolonged in a double heterozygous mutant of the metabolic enzyme non-quiescent mutant 1 (NQM1), a paralogue to the pentose phosphate pathway enzyme transaldolase (TAL1), and the transcription factor vitamin H response transcription factor 1 (VHR1). We find that cells deleted for the two genes possess increased clonogenicity at late stages of stationary phase survival, but find no indication that the mutations delay initial mortality upon reaching stationary phase, canonically defined as an extension of chronological lifespan. We show that both genes influence the concentration of metabolites of glycolysis and the pentose phosphate pathway, central metabolic players in the ageing process, and affect osmolality of growth media in stationary phase cultures. Moreover, NQM1 is glucose repressed and induced in a VHR1 dependent manner upon caloric restriction, on non-fermentable carbon sources, as well as under osmotic and oxidative stress. Finally, deletion of NQM1 is shown to confer resistance to oxidizing substances. CONCLUSIONS: The transaldolase paralogue NQM1 and the transcription factor VHR1 interact haploproficiently and affect yeast stationary phase survival. The glucose repressed NQM1 gene is induced under various stress conditions, affects stress resistance and this process is dependent on VHR1. While NQM1 appears not to function in the pentose phosphate pathway, the interplay of NQM1 with VHR1 influences the yeast metabolic homeostasis and stress tolerance during stationary phase, processes associated with yeast ageing.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Transaldolase/metabolismo , Fatores de Transcrição/metabolismo , Técnicas de Inativação de Genes , Glicólise , Osmose , Estresse Oxidativo , Via de Pentose Fosfato , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transaldolase/genética
13.
J Inherit Metab Dis ; 38(5): 889-94, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25647543

RESUMO

We present the first two reported unrelated patients with an isolated sedoheptulokinase (SHPK) deficiency. The first patient presented with neonatal cholestasis, hypoglycemia, and anemia, while the second patient presented with congenital arthrogryposis multiplex, multiple contractures, and dysmorphisms. Both patients had elevated excretion of erythritol and sedoheptulose, and each had a homozygous nonsense mutation in SHPK. SHPK is an enzyme that phosphorylates sedoheptulose to sedoheptulose-7-phosphate, which is an important intermediate of the pentose phosphate pathway. It is questionable whether SHPK deficiency is a causal factor for the clinical phenotypes of our patients. This study illustrates the necessity of extensive functional and clinical workup for interpreting a novel variant, including nonsense variants.


Assuntos
Via de Pentose Fosfato/genética , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Anemia/complicações , Anemia/genética , Artrogripose/genética , Pré-Escolar , Colestase/complicações , Colestase/genética , Códon sem Sentido , Consanguinidade , Feminino , Heptoses/metabolismo , Humanos , Hipoglicemia/complicações , Hipoglicemia/genética , Masculino , Fenótipo , Fosfatos Açúcares/metabolismo
14.
Eur J Pediatr ; 173(12): 1679-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24497183

RESUMO

UNLABELLED: Transaldolase (TALDO) deficiency is a rare metabolic disease in the pentose phosphate pathway, which manifests as a severe, early-onset multisystem disease. The body fluids of affected patients contain increased polyol concentrations and seven-carbon chain carbohydrates. We report the molecular and clinical findings in two recently diagnosed transaldolase-deficient children, both presented at birth. During infancy, they presented thin skin with a network of visible vessels, spider telangiectasias and multiple haemangiomas. Such unusual skin changes are characteristic of liver damage. Later, the patients developed rapidly progressive nodular liver fibrosis, tubulopathy and severe clotting disturbances. The clinical features of these patients were in line with previously studied patients with transaldolase deficiency. The diagnosis was established by detecting high concentrations of erythritol, ribitol, arabitol, sedoheptitol, perseitol, sedoheptulose and sedoheptulose-7-phosphate in the urine. Detection was made by gas chromatography and liquid chromatography-tandem mass spectrometry and then confirmed by molecular analysis of the TALDO gene. CONCLUSION: Transaldolase deficiency, a rare early-onset multisystem disease, should be considered by neonatologists, paediatricians, hepatologists and nephrologists in the differential diagnosis of patients presenting hepatosplenomegaly, thrombocytopenia, anaemia, bleeding diathesis, liver failure and tubulopathy.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Transaldolase/sangue , Transaldolase/deficiência , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Cromatografia Gasosa , Cromatografia Líquida , DNA/genética , Diagnóstico Diferencial , Regulação da Expressão Gênica no Desenvolvimento , Testes Genéticos/métodos , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase , Transaldolase/genética
15.
Essays Biochem ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639060

RESUMO

Sulfate is an important anion as sulfonation is essential in modulation of several compounds, such as exogens, polysaccharide chains of proteoglycans, cholesterol or cholesterol derivatives and tyrosine residues of several proteins. Sulfonation requires the presence of both the sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) and a sulfotransferase. Genetic disorders affecting sulfonation, associated with skeletal abnormalities, impaired neurological development and endocrinopathies, demonstrate the importance of sulfate. Yet sulfate is not measured in clinical practice. This review addresses sulfate metabolism and consequences of sulfonation defects, how to measure sulfate and why we should measure sulfate more often.

16.
J Inherit Metab Dis ; 36(6): 997-1004, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23315216

RESUMO

PURPOSE: Transaldolase deficiency is a recently described inborn error of pentose phosphate pathway. We conducted this study to further delineate the associated phenotype. METHODS AND RESULTS: We report on 12 new cases representing six families with this metabolic defect that were observed over an 8 year span. None of these cases received the correct diagnosis initially because of significant overlap in the presenting symptoms (growth retardation, dysmorphic features, cutis laxa, congenital heart disease, hepatosplenomegaly, pancytopenia, and bleeding tendency) with a wide range of genetic disorders. However, the consanguineous nature of these families allowed us to pursue autozygome analysis, which highlighted TALDO as the likely candidate gene and sequencing confirmed segregation of a novel homozygous mutation with the disease in all the studied families. Biochemical analysis was also consistent with transaldolase deficiency. CONCLUSION: This study expands the clinical definition of transaldolase deficiency, and adds to its allelic heterogeneity. In addition, we emphasize the diagnostic challenge posed by this rare and pleiotropic metabolic disorder.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/genética , Transaldolase/deficiência , Criança , Pré-Escolar , Consanguinidade , Família , Evolução Fatal , Feminino , Heterogeneidade Genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Transaldolase/genética
17.
JIMD Rep ; 64(3): 217-222, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37151363

RESUMO

Glutaminase (GLS) hyperactivity was first described in 2019 in a patient with profound developmental delay and infantile cataract. Here, we describe a 4-year-old boy with GLS hyperactivity due to a de novo heterozygous missense variant in GLS, detected by trio whole exome sequencing. This boy also exhibits developmental delay without dysmorphic features, but does not have cataract. Additionally, he suffers from epilepsy with tonic clonic seizures. In line with the findings in the previously described patient with GLS hyperactivity, in vivo 3 T magnetic resonance spectroscopy (MRS) of the brain revealed an increased glutamate/glutamine ratio. This increased ratio was also found in urine with UPLC-MS/MS, however, inconsistently. This case indicates that the phenotypic spectrum evoked by GLS hyperactivity may include epilepsy. Clarifying this phenotypic spectrum is of importance for the prognosis and identification of these patients. The combination of phenotyping, genetic testing, and metabolic diagnostics with brain MRS and in urine is essential to identify new patients with GLS hyperactivity and to further extend the phenotypic spectrum of this disease.

18.
Front Neurol ; 14: 1206106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560457

RESUMO

Background/Objectives: The timely diagnosis of inherited metabolic disorders (IMD) is essential for initiating treatment, prognostication and genetic testing of relatives. Recognition of IMD in adults is difficult, because phenotypes are different from those in children and influenced by symptoms from acquired conditions. This systematic literature review aims to answer the following questions: (1) What is the diagnostic yield of exome/genome sequencing (ES/GS) for IMD in adults with unsolved phenotypes? (2) What characteristics do adult patients diagnosed with IMD through ES/GS have? Methods: A systematic search was conducted using the following search terms (simplified): "Whole exome sequencing (WES)," "Whole genome sequencing (WGS)," "IMD," "diagnostics" and the 1,450 known metabolic genes derived from ICIMD. Data from 695 articles, including 27,702 patients, were analyzed using two different methods. First, the diagnostic yield for IMD in patients presenting with a similar phenotype was calculated. Secondly, the characteristics of patients diagnosed with IMD through ES/GS in adulthood were established. Results: The diagnostic yield of ES and/or GS for adult patients presenting with unexplained neurological symptoms is 11% and for those presenting with dyslipidemia, diabetes, auditory and cardiovascular symptoms 10, 9, 8 and 7%, respectively. IMD patients diagnosed in adulthood (n = 1,426), most frequently portray neurological symptoms (65%), specifically extrapyramidal/cerebellar symptoms (57%), intellectual disability/dementia/psychiatric symptoms (41%), pyramidal tract symptoms/myelopathy (37%), peripheral neuropathy (18%), and epileptic seizures (16%). The second most frequently observed symptoms were ophthalmological (21%). In 47% of the IMD diagnosed patients, symptoms from multiple organ systems were reported. On average, adult patients are diagnosed 15 years after first presenting symptoms. Disease-related abnormalities in metabolites in plasma, urine or cerebral spinal fluid were identified in 40% of all patients whom underwent metabolic screening. In 52% the diagnosis led to identification of affected family members with the same IMD. Conclusion: ES and/or GS is likely to yield an IMD diagnosis in adult patients presenting with an unexplained neurological phenotype, as well as in patients with a phenotype involving multiple organ systems. If a gene panel does not yield a conclusive diagnosis, it is worthwhile to analyze all known disease genes. Further prospective research is needed to establish the best diagnostic approach (type and sequence of metabolic and genetic test) in adult patients presenting with a wide range of symptoms, suspected of having an IMD. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42021295156.

19.
Nephrol Dial Transplant ; 27(8): 3224-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22510381

RESUMO

BACKGROUND: Transaldolase deficiency (OMIM 606003) is a multisystem disorder first described in 2001. Transaldolase is an enzyme of the reversible part of the pentose phosphate pathway. Affected patients have abnormal polyol concentrations in body fluids, mostly in urine. The clinical presentation is variable. The leading symptoms are coagulopathy, thrombocytopenia, hepatosplenomegaly, hepatic fibrosis and dysmorphic features. The objective of our study was to attempt to characterize the renal phenotype of patients with transaldolase deficiency. METHODS: Clinical and laboratory data of all nine patients with transaldolase deficiency presently known were gathered by retrospective chart analysis. RESULTS: Nephrological abnormalities were present in seven of the nine patients. The most common findings were low molecular weight (LMW) proteinuria and hypercalciuria. The two oldest patients had moderate chronic kidney failure. In two patients, generalized aminoaciduria was found, two patients had renal phosphate wasting and three patients had hyperchloremic metabolic acidosis. Three patients had anatomical abnormalities. CONCLUSIONS: Renal tubular dysfunction is present in the majority of patients with transaldolase deficiency and may lead to chronic renal failure. The combination of unexplained liver dysfunction with LMW proteinuria should prompt metabolic screening for transaldolase deficiency by measuring urinary polyols. In patients with transaldolase deficiency, monitoring of kidney function is mandatory.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/patologia , Rim/anormalidades , Adolescente , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Criança , Pré-Escolar , Feminino , Taxa de Filtração Glomerular , Humanos , Hipercalciúria/etiologia , Lactente , Recém-Nascido , Rim/fisiopatologia , Falência Renal Crônica/etiologia , Masculino , Via de Pentose Fosfato , Proteinúria/etiologia , Estudos Retrospectivos , Transaldolase/deficiência , Transaldolase/genética
20.
Biochim Biophys Acta ; 1802(11): 1028-35, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20600873

RESUMO

BACKGROUND: Sedoheptulose, arabitol, ribitol, and erythritol have been identified as key diagnostic metabolites in TALDO deficiency. METHOD: Urine from 6 TALDO-deficient patients and TALDO-deficient knock-out mice were analyzed using ¹H-NMR spectroscopy and GC-mass spectrometry. RESULTS: Our data confirm the known metabolic characteristics in TALDO-deficient patients. The ß-furanose form was the major sedoheptulose anomer in TALDO-deficient patients. Erythronic acid was identified as a major abnormal metabolite in all patients and in knock-out TALDO mice implicating an as yet unknown biochemical pathway in this disease. A putative sequence of enzymatic reactions leading to the formation of erythronic acid is presented. The urinary concentration of the citric acid cycle intermediates 2-oxoglutaric acid and fumaric acid was increased in the majority of TALDO-deficient patients but not in the knock-out mice. CONCLUSION: Erythronic acid is a novel and major hallmark in TALDO deficiency. The pathway leading to its production may play a role in healthy humans as well. In TALDO-deficient patients, there is an increased flux through this pathway. The finding of increased citric acid cycle intermediates hints toward a disturbed mitochondrial metabolism in TALDO deficiency.


Assuntos
Biomarcadores/urina , Butiratos/urina , Mitocôndrias/metabolismo , Transaldolase/deficiência , Adolescente , Animais , Butiratos/química , Pré-Escolar , Fumaratos/química , Fumaratos/urina , Cromatografia Gasosa-Espectrometria de Massas , Heptoses/química , Heptoses/urina , Humanos , Lactente , Recém-Nascido , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/urina , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Knockout , Estrutura Molecular , Via de Pentose Fosfato , Ribitol/química , Ribitol/urina , Álcoois Açúcares/química , Álcoois Açúcares/urina , Transaldolase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa