Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 16(7): 377-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26087679

RESUMO

Stress necessitates an immediate engagement of multiple neural and endocrine systems. However, exposure to a single stressor causes adaptive changes that modify responses to subsequent stressors. Recent studies examining synapses onto neuroendocrine cells in the paraventricular nucleus of the hypothalamus demonstrate that stressful experiences leave indelible marks that alter the ability of these synapses to undergo plasticity. These adaptations include a unique form of metaplasticity at glutamatergic synapses, bidirectional changes in endocannabinoid signalling and bidirectional changes in strength at GABAergic synapses that rely on distinct temporal windows following stress. This rich repertoire of plasticity is likely to represent an important building block for dynamic, experience-dependent modulation of neuroendocrine stress adaptation.


Assuntos
Hipotálamo/metabolismo , Plasticidade Neuronal/fisiologia , Estresse Psicológico/metabolismo , Sinapses/metabolismo , Animais , Humanos , Rede Nervosa/metabolismo , Estresse Psicológico/psicologia
2.
J Neurosci ; 34(18): 6177-81, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790188

RESUMO

Alterations in synaptic endocannabinoid signaling are a widespread neurobiological consequence of many in vivo experiences, including stress. Here, we report that stressor salience is critical for bidirectionally modifying presynaptic CB-1 receptor (CB1R) function at hypothalamic GABA synapses controlling the neuroendocrine stress axis in male rats. While repetitive, predictable stressor exposure impairs presynaptic CB1R function, these changes are rapidly reversed upon exposure to a high salience experience such as novel stress or by manipulations that enhance neural activity levels in vivo or in vitro. Together these data demonstrate that experience salience, through alterations in afferent synaptic activity, induces rapid changes in endocannabinoid signaling.


Assuntos
Endocanabinoides/metabolismo , Hipotálamo/patologia , Transdução de Sinais/fisiologia , Estresse Psicológico/patologia , Sinapses/fisiologia , Analgésicos/farmacologia , Animais , Animais Recém-Nascidos , Benzoxazinas/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Odorantes , Piperidinas/farmacologia , Cloreto de Potássio/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/etiologia , Natação/psicologia , Sinapses/efeitos dos fármacos
3.
Neuron ; 91(3): 644-51, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27497223

RESUMO

Cannabinoid receptor type 1 (CB1R)-expressing CCK interneurons are key regulators of cortical circuits. Here we report that retrograde endocannabinoid signaling and CB1R-mediated regulation of inhibitory synaptic transmission onto basal amygdala principal neurons strongly depend on principal neuron projection target. Projection-specific asymmetries in the regulation of local inhibitory micro-circuits may contribute to the selective activation of distinct amygdala output pathways during behavioral changes.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Colecistocinina/genética , Colecistocinina/fisiologia , Lipase Lipoproteica/biossíntese , Masculino , Camundongos , Camundongos Transgênicos , Monoacilglicerol Lipases/biossíntese , Plasticidade Neuronal/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Transmissão Sináptica
4.
Nat Commun ; 7: 11937, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306314

RESUMO

All organisms possess innate behavioural and physiological programmes that ensure survival. In order to have maximum adaptive benefit, these programmes must be sufficiently flexible to account for changes in the environment. Here we show that hypothalamic CRH neurons orchestrate an environmentally flexible repertoire of behaviours that emerge after acute stress in mice. Optical silencing of CRH neurons disrupts the organization of individual behaviours after acute stress. These behavioural patterns shift according to the environment after stress, but this environmental sensitivity is blunted by activation of PVN CRH neurons. These findings provide evidence that PVN CRH cells are part of a previously unexplored circuit that matches precise behavioural patterns to environmental context following stress. Overactivity in this network in the absence of stress may contribute to environmental ambivalence, resulting in context-inappropriate behavioural strategies.


Assuntos
Adaptação Fisiológica , Hormônio Liberador da Corticotropina/genética , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Estresse Fisiológico , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Eletrochoque , Comportamento Exploratório/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Expressão Gênica , Genes Reporter , Asseio Animal/fisiologia , Luz , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Optogenética , Núcleo Hipotalâmico Paraventricular/citologia , Sono/fisiologia
5.
Trends Neurosci ; 36(8): 471-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23706151

RESUMO

Retrograde signaling is a fundamental means by which neurons communicate. The acceptance of this statement has required a revision of how we view transmission and storage of information at the synapse. Although there is a substantial body of literature on the diverse molecules that serve as retrograde signals, less is known about how retrograde signal capacity can be modified. Is retrograde signaling plastic? How does this plasticity manifest? Are there behavioral correlates that may bias a neuron towards 'changing its tune', retrogradely speaking, of course? Here, we review recent findings that retrograde signaling is a highly labile process that adds additional layers of complexity that must be untangled to understand information processing in the nervous system.


Assuntos
Adaptação Fisiológica/fisiologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Modelos Neurológicos , Transdução de Sinais/fisiologia
6.
PLoS One ; 8(5): e64943, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724107

RESUMO

Corticotropin-releasing hormone (CRH)-containing neurons in the paraventricular nucleus of the hypothalamus (PVN) initiate and control neuroendocrine responses to psychogenic and physical stress. Investigations into the physiology of CRH neurons, however, have been hampered by the lack of tools for adequately targeting or visualizing this cell population. Here we characterize CRH neurons in the PVN of mice that express tdTomato fluorophore, generated by crosses of recently developed Crh-IRES-Cre driver and Ai14 Cre-reporter mouse strains. tdTomato containing PVN neurons in Crh-IRES-Cre;Ai14 mice are readily visualized without secondary-detection methods. These neurons are predominantly neuroendocrine and abundantly express CRH protein, but not other PVN phenotypic neuropeptides. After an acute stress, a large majority of tdTomato cells express neuronal activation marker c-Fos. Finally, tdTomato PVN neurons exhibit homogenous intrinsic biophysical and synaptic properties, and can be optogenetically manipulated by viral Cre-driven expression of channelrhodopsin. These observations highlight basic cell-type characteristics of CRH neurons in a mutant mouse, providing validation for its future use in probing neurophysiology of endocrine stress responses.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Integrases/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Ribossomos/metabolismo , Animais , Membrana Celular/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios/fisiologia , Optogenética , Núcleo Hipotalâmico Paraventricular/fisiologia , Fenótipo , Estresse Fisiológico , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo
7.
Nat Neurosci ; 16(5): 596-604, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23563581

RESUMO

Stressful experience initiates a neuroendocrine response culminating in the release of glucocorticoid hormones into the blood. Glucocorticoids feed back to the brain, causing adaptations that prevent excessive hormone responses to subsequent challenges. How these changes occur remains unknown. We found that glucocorticoid receptor activation in rodent hypothalamic neuroendocrine neurons following in vivo stress is a metaplastic signal that allows GABA synapses to undergo activity-dependent long-term depression (LTDGABA). LTDGABA was unmasked through glucocorticoid receptor-dependent inhibition of Regulator of G protein Signaling 4 (RGS4), which amplified signaling through postsynaptic metabotropic glutamate receptors. This drove somatodendritic opioid release, resulting in a persistent retrograde suppression of synaptic transmission through presynaptic µ receptors. Together, our data provide new evidence for retrograde opioid signaling at synapses in neuroendocrine circuits and represent a potential mechanism underlying glucocorticoid contributions to stress adaptation.


Assuntos
Analgésicos Opioides/metabolismo , Retroalimentação Fisiológica/fisiologia , Glucocorticoides/metabolismo , Hipotálamo/citologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Channelrhodopsins , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurotransmissores/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/deficiência , Receptores de Glucocorticoides/metabolismo , Receptores Opioides mu/genética , Estresse Psicológico/sangue , Estresse Psicológico/patologia , Sinapses/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
8.
Nat Neurosci ; 16(5): 605-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23563580

RESUMO

Exposure to a stressor sensitizes behavioral and hormonal responses to future stressors. Stress-associated release of noradrenaline enhances the capacity of central synapses to show plasticity (metaplasticity). We found noradrenaline-dependent metaplasticity at GABA synapses in the paraventricular nucleus of the hypothalamus in rat and mouse that controls the hypothalamic-pituitary-adrenal axis. In vivo stress exposure was required for these synapses to undergo activity-dependent long-term potentiation (LTPGABA). The activation of ß-adrenergic receptors during stress functionally upregulated metabotropic glutamate receptor 1 (mGluR1), allowing for mGluR1-dependent LTPGABA during afferent bursts. LTPGABA was expressed postsynaptically and manifested as the emergence of new functional synapses. Our findings provide, to the best of our knowledge, the first demonstration that noradrenaline release during an in vivo challenge alters information storage capacity at GABA synapses. Because these GABA synapses become excitatory following acute stress, this metaplasticity may contribute to neuroendocrine sensitization to stress.


Assuntos
Plasticidade Neuronal/fisiologia , Norepinefrina/metabolismo , Estresse Psicológico/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Channelrhodopsins , Quelantes/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Hipotálamo/citologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Luz , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Neurotransmissores/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/patologia , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa