Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mSystems ; : e0066424, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158330

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) sequence type 630 (ST630) is a rarely reported lineage worldwide. This study aimed to trace the dissemination of the emerging MRSA ST630 clones in China and investigate their virulence potential. We collected 22 ST630-MRSA isolates from across China and performed whole-genome sequencing analysis and virulence characterization on these isolates. Epidemiological results showed that MRSA ST630 isolates were primarily isolated from pus/wound secretions, mainly originating from Jiangxi province, and carried diverse virulence and drug resistance genes. Staphylococcal cassette chromosome mec type V (SCCmec V) predominated (11/22, 50.0%) among the MRSA ST630 isolates. Interestingly, nearly half (45.5%) of the 22 ST630-MRSA isolates tested lacked intact SCCmec elements. Phylogenetic analysis demonstrated that ST630-MRSA could be divided into two distinct clades, with widespread dissemination mainly in Chinese regions. Five representative isolates were selected for phenotypic assays, including hemolysin activity, real-time fluorescence quantitative PCR, western blot analysis, hydrogen peroxide killing assay, blood killing assay, cell adhesion and invasion assay, and mouse skin abscess model. The results showed that, compared to the USA300-LAC strain, ST630 isolates exhibited particularly strong invasiveness and virulence in the aforementioned phenotypic assays. This study described the emergence of a highly virulent ST630-MRSA lineage and improved our insight into the molecular epidemiology of ST630 clones in China.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) sequence type 630 (ST630) is an emerging clone with an increasing isolation rate in China. This study raises awareness of the hypervirulent MRSA ST630 clones in China and alerts people to their widespread dissemination. ST630-staphylococcal cassette chromosome mec V is a noteworthy clone in China, and we present the first comprehensive genetic and phenotypic analysis of this lineage. Our findings provide valuable insights for the prevention and control of infections caused by this emerging MRSA clone.

2.
mSphere ; 9(1): e0056423, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38170984

RESUMO

The emergence of antibiotic-resistant and biofilm-producing Staphylococcus aureus isolates presents major challenges for treating staphylococcal infections. Biofilm inhibition is an important anti-virulence strategy. In this study, a novel maleimide-diselenide hybrid compound (YH7) was synthesized and demonstrated remarkable antimicrobial activity against methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) in both planktonic cultures and biofilms. The minimum inhibitory concentration (MIC) of YH7 for S. aureus isolates was 16 µg/mL. Quantification of biofilms demonstrated that the sub-MIC (4 µg/mL) of YH7 significantly inhibits biofilm formation in both MSSA and MRSA. Confocal laser scanning microscopy analysis further confirmed the biofilm inhibitory potential of YH7. YH7 also significantly suppressed bacterial adherence to A549 cells. Moreover, YH7 treatment significantly inhibited S. aureus colonization in nasal tissue of mice. Preliminary mechanistic studies revealed that YH7 exerted potent biofilm-suppressing effects by inhibiting polysaccharide intercellular adhesin (PIA) synthesis, rather than suppressing bacterial autolysis. Real-time quantitative PCR data indicated that YH7 downregulated biofilm formation-related genes (clfA, fnbA, icaA, and icaD) and the global regulatory gene sarX, which promotes PIA synthesis. The sarX-dependent antibiofilm potential of YH7 was validated by constructing S. aureus NCTC8325 sarX knockout and complementation strains. Importantly, YH7 demonstrated a low potential to induce drug resistance in S. aureus and exhibited non-toxic to rabbit erythrocytes, A549, and BEAS-2B cells at antibacterial concentrations. In vivo toxicity assays conducted on Galleria mellonella further confirmed that YH7 is biocompatible. Overall, YH7 demonstrated potent antibiofilm activity supports its potential as an antimicrobial agent against S. aureus biofilm-related infections. IMPORTANCE Biofilm-associated infections, characterized by antibiotic resistance and persistence, present a formidable challenge in healthcare. Traditional antibacterial agents prove inadequate against biofilms. In this study, the novel compound YH7 demonstrates potent antibiofilm properties by impeding the adhesion and the polysaccharide intercellular adhesin production of Staphylococcus aureus. Notably, its exceptional efficacy against both methicillin-resistant and methicillin-susceptible strains highlights its broad applicability. This study highlights the potential of YH7 as a novel therapeutic agent to address the pressing issue of biofilm-driven infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Coelhos , Staphylococcus aureus , Staphylococcus aureus Resistente à Meticilina/genética , Meticilina/farmacologia , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Biofilmes
3.
Infect Drug Resist ; 17: 2541-2554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933778

RESUMO

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a great threat to public health worldwide. Ceftazidime-avibactam (CZA) is an effective ß-lactam/ß-lactamase inhibitors against CRKP. However, reports of resistance to CZA, mainly caused by Klebsiella pneumoniae carbapenemase (KPC) variants, have increased in recent years. In this study, we aimed to describe the resistance characteristics of KPC-12, a novel KPC variant identified from a CZA resistant K. pneumoniae. Methods: The K. pneumoniae YFKP-97 collected from a patient with respiratory tract infection was performed whole-genome sequencing (WGS) on the Illumina NovaSeq 6000 platform. Genomic characteristics were analyzed using bioinformatics methods. Antimicrobial susceptibility testing was conducted by the broth microdilution method. Induction of resistant strain was carried out in vitro as previously described. The G. mellonella killing assay was used to evaluate the pathogenicity of strains, and the conjugation experiment was performed to evaluate plasmid transfer ability. Results: Strain YFKP-97 was a multidrug-resistant clinical ST11-KL47 K. pneumoniae confers high-level resistance to CZA (16/4 µg/mL). WGS revealed that a KPC variant, KPC-12, was carried by the IncFII (pHN7A8) plasmids (pYFKP-97_a and pYFKP-97_b) and showed significantly decreased activity against carbapenems. In addition, there was a dose-dependent effect of bla KPC-12 on its activity against ceftazidime. In vitro inducible resistance assay results demonstrated that the KPC-12 variant was more likely to confer resistance to CZA than the KPC-2 and KPC-3 variants. Discussion: Our study revealed that patients who was not treated with CZA are also possible to be infected with CZA-resistant strains harbored a novel KPC variant. Given that the transformant carrying bla KPC-12 was more likely to exhibit a CZA-resistance phenotype. Therefore, it is important to accurately identify the KPC variants as early as possible.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa