RESUMO
The accurate analysis of chemical isomers plays an important role in the study of their different toxic effects and targeted detection of pollutant isomers in foods. The Alternaria mycotoxins tenuazonic acid (TeA) and iso-tenuazonic acid (ITeA) are two isomer mycotoxins with the lack of single analysis methods due to the similar structures. Antibody-based immunoassays exhibit high sensitivity and superior application in isomer-specific determination. Previously, various kinds of antibodies for TeA have been prepared in our group. Herein, highly specific nanobodies (Nbs) against ITeA mycotoxin were selected from immune nanobody phage display library, and one of Nbs, namely Nb(B3G3) exhibited excellent affinity, thermal stability as well as organic solvent tolerance. By molecular simulation and docking technology, it was found that stronger interaction between Nb(B3G3) and ITeA lead to higher affinity than that for its isomer TeA. Furthermore, a sensitive indirect competitive enzyme-linked immunosorbent assay (icELISA) was established with a limit of detection (LOD) of 0.09 ng/mL for ITeA mycotoxin. The recovery rate of ITeA in spiked samples was analyzed with 84.8%-89.5% for rice, 78.3%-96.3% for flour, and 79.5%-90.7% for bread. A conventional LC-MS/MS method was used to evaluate the accuracy of this proposed icELISA, which showed a satisfactory consistent correlation. Since the convenient strategy for nanobody generation by phage display technology, this study provide new biorecognition elements and sensitive immunoassay for analysis of ITeA in foods.
RESUMO
The isolation of nanobodies (Nbs) from phage display libraries is an increasingly effective approach for the generation of new biorecognition elements, which can be used to develop immunoassays. In this study, highly specific Nbs against the Alternaria mycotoxin tenuazonic acid (TeA) were isolated from an immune nanobody phage display library using a stringent biopanning strategy. The obtained Nbs were characterized by classical enzyme-linked immunosorbent assay (ELISA), and the best one Nb-3F9 was fused with nanoluciferase to prepare an advanced bifunctional fusion named nanobody-nanoluciferase (Nb-Nluc). In order to improve the sensitivity and reduce the assay time, two different kinds of luminescent strategies including chemiluminescent enzyme immunoassay (CLEIA) and bioluminescent enzyme immunoassay (BLEIA) were established, respectively, on the basis of the single Nb and the fusion protein Nb-Nluc for TeA detection. The two-step CLEIA was developed on the basis of the same nanobody as ELISA, only with simple substrate replacement from 3,3',5,5'-tetramethylbenzidine (TMB) to luminol. In contrast with CLEIA, the novel BLEIA was conducted in one-step new strategy on the basis of Nb-Nluc and bioluminescent substrate coelenterazine-h (CTZ-h). Their half maximal inhibitory concentration (IC50) values were similar to 8.6 ng/mL for CLEIA and 9.3 ng/mL for BLEIA, which was a 6-fold improvement in sensitivity compared with that of ELISA (IC50 of 54.8 ng/mL). Both of the two assays provided satisfactory recoveries ranging from 80.1%-113.5% in real samples, which showed better selectivity for TeA analogues and other common mycotoxins. These results suggested that Nbs and Nb-Nluc could be used as useful reagents for immunodetection and that the developed CLEIA/BLEIA have great potential for TeA analysis.
Assuntos
Imunoensaio/métodos , Técnicas Imunoenzimáticas/métodos , Anticorpos de Domínio Único/imunologia , Ácido Tenuazônico/metabolismo , HumanosRESUMO
A rapid and sensitive direct competitive fluorescence enzyme immunoassay (dc-FEIA) for ochratoxin A (OTA) based on a nanobody (Nb)-alkaline phosphatase (AP) fusion protein was developed. The VHH (variable domain of heavy chain antibody) gene of Nb28 was subcloned into the expression vector pecan45 containing the AP double-mutant gene. The Nb28-AP construct was transformed into Escherichia coli BL21(DE3)plysS, and soluble expression in bacteria was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot. Both the Nb properties and AP enzymatic activity were validated by colorimetric and fluorometric analysis. The 50% inhibitory concentration and the detection limit of the dc-FEIA were 0.13 and 0.04 ng/mL, respectively, with a linear range of 0.06-0.43 ng/mL. This assay was compared with LC-MS/MS, and the results indicated the reliability of Nb-AP fusion protein-based dc-FEIA for monitoring OTA contamination in cereal.
Assuntos
Fosfatase Alcalina/metabolismo , Grão Comestível/microbiologia , Técnicas Imunoenzimáticas/métodos , Micotoxinas/análise , Ocratoxinas/análise , Anticorpos de Domínio Único/imunologia , Fosfatase Alcalina/genética , Grão Comestível/química , Escherichia coli/genética , Fluorometria/métodos , Limite de Detecção , Ocratoxinas/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Domínio Único/genéticaRESUMO
The non-toxic immunoassay for mycotoxins is being paid more attention due to its advantages of higher safety and cost savings by using anti-idiotype antibodies to substitute toxins. In this study, with tenuazonic acid (TeA), a kind of highly toxic Alternaria mycotoxin as the target, an enhanced non-toxic immunoassay was developed based on the ferritin-displayed anti-idiotypic nanobody-nanoluciferase multimers. First, three specific ß-type anti-idiotype nanobodies (AId-Nbs) bearing the internal image of TeA mycotoxin were selected from an immune phage display library. Then, the AId-Nb 2D with the best performance was exploited to generate a nanoluciferase (Nluc)-functionalized fusion monomer, by which a one-step non-toxic immunodetection format for TeA was established and proven to be effective. To further improve the affinity of the monomer, a ferritin display strategy was used to prepare 2D-Nluc fusion multimers. Finally, an enhanced bioluminescent enzyme immunoassay (BLEIA) was established in which the half maximal inhibitory concentration (IC50) for TeA was 6.5 ng/mL with a 10.5-fold improvement of the 2D-based enzyme-linked immunosorbent assay (ELISA). The proposed assay exhibited high selectivities and good recoveries of 80.0-95.2%. The generated AId-Nb and ferritin-displayed AId-Nb-Nluc multimers were successfully extended to the application of TeA in food samples. This study brings a new strategy for production of multivalent AId-Nbs and non-toxic immunoassays for trace toxic contaminants.
Assuntos
Micotoxinas , Anticorpos de Domínio Único , Alternaria , Ensaio de Imunoadsorção Enzimática , Ferritinas , Anticorpos de Domínio Único/genética , Ácido TenuazônicoRESUMO
The natural mycotoxin tenuazonic acid (TeA) in foods is identified as the most toxic mycotoxin among the over 70 kinds of secondary toxic metabolites produced by Alternaria alternata. Some hapten-antibody-mediated immunoassays have been developed for TeA detection in food samples, but these methods show unsatisfactory sensitivity and specificity. In this study, a rationally designed hapten for TeA mycotoxin generated with computer-assisted modeling was prepared to produce a highly specific camel polyclonal antibody, and an indirect competitive chemiluminescence enzyme immunoassay (icCLEIA) was established with a limit of detection of 0.2 ng mL-1 under optimized conditions. The cross-reactivity results showed that several analogs and some common mycotoxins had negligible recognition by the anti-TeA polyclonal antibody. The average recoveries spiked in fruit juices were determined to be 92.7% with an acceptable coefficient of variation, and good correlations between icCLEIA and liquid chromatography tandem mass spectrometry (LC-MS/MS) results were obtained in spiked samples. This developed icCLEIA for TeA detection with significantly improved sensitivity and satisfactory specificity is a promising alternative for environmental monitoring and food safety.
Assuntos
Micotoxinas , Ácido Tenuazônico , Alternaria , Animais , Camelus , Cromatografia Líquida , Sucos de Frutas e Vegetais , Imunoensaio , Luminescência , Micotoxinas/análise , Espectrometria de Massas em Tandem , Ácido Tenuazônico/análiseRESUMO
2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide, is a small organic chemical pollutant in the environment. To develop a nanobody-based immunoassay for monitoring trace levels of 2,4-D, a step-wise strategy for the generation of nanobodies highly specific against this small chemical was employed. Firstly, we synthesized three novel haptens mimicking 2,4-D and assessed their influence on the sensitivity and specificity of the existing antibody-based assay. Polyclonal antibodies (pAb) from rabbits showed good sensitivity and moderate specificity for 2,4-D, pAb from llama based on selected haptens showed similar performance when compared to those from rabbits. Secondly, nanobodies derived from llama were generated for 2,4-D by an effective procedure, including serum monitoring and one-step library construction. One nanobody, NB3-9, exhibited good sensitivity against 2,4-D (IC50 = 29.2 ng/mL) had better specificity than the rabbit pAb#1518, with no cross-reactivities against the 2,4-D analogs tested. Thirdly, one-step fluorescent enzyme immunoassay (FLEIA) for 2,4-D based on a nanobody-alkaline phosphatase (AP) fusion was developed with IC50 of 1.9 ng/mL and a linear range of 0.4-8.6 ng/mL. Environmental water samples were analyzed by FLEIA and LC-MS/MS for comparison, and the results were consistent between both methods. Therefore, the proposed step-wise strategy from hapten design to nanobody-AP fusion production was successfully conducted, and the resulting nanobody based FLEIA was demonstrated as a convenient tool to monitor 2,4-D residuals in the environment.