Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(5): 4137-4151, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34110576

RESUMO

The purpose of this study was to explore the effect of miR-34c on PDGF-BB-induced HAVSMCs phenotypic transformation and proliferation via PDGFR-ß/SIRT1 pathway, so as to find a new method for early diagnosis and treatment of cardiovascular disease. HA-VSMCs were treated with platelet-derived growth factor-BB (PDGF-BB) at 0 h, 12 h, 24 h, 48 h or 36 h to explore the optimal time for phenotypic transformation of VSMCs. And then, PDGF-BB-induced HA-VSMCs were transfected with miR-34c mimics/mimics NC and pcDNA3.1-PDGFR-ß/pcDNA3.1-NC to observe cell biological behaviour. CCK8 was used to detect cell proliferation activity. Transwell chamber assay was used to detect cell invasion. Early apoptosis was analyzed by flow cytometry. The expression of α-SMA and Smemb was detected by immunofluorescence staining. The expressions of PDGFR-ß, IRF9, Acetyl-NF-κB/p65, Acetyl-p53 and CyclinD1 were analyzed by Western blot analysis. The expression of miR-34a, miR-34b and miR-34c was detected by RT-PCR, and the targeting relationship between miR-34c and PDGFR-ß was detected by luciferase reporting assay. The results indicated the proliferation and migration of PDGF-BB-induced HA-VSMCs significantly increased, and apoptosis significantly decreased. Besides, α-SMA decreased significantly, while Smemb increased significantly. Furthermore, expressions of PDGFR-ß, IRF9, Acetyl-NF-κB/p65, Acetyl-p53 and CyclinD1 increased significantly, and SIRT1 decreased significantly. Experimental results showed that, miR-34c mimics significantly inhibited cell proliferation and migration, and promoted cell apoptosis, and miR-34c inhibitor had the opposite effects. MiR-34c mimics significantly increased α-SMA expression and decreased Smemb expression, while the opposite effects were reflected after transfection with miR-34c inhibitor. Moreover, miR-34c mimics significantly decreased the expressions of PDGFR-ß, IRF9, Acetyl-NF-κB/p65, Acetyl-p53 and CyclinD1, and significantly increased the expression of SIRT1, while miR-34c inhibitor had the opposite effects. Luciferase assay confirmed that PDGFR-ß was a potential target of miR-34c. Subsequently, PDGF-BB-induced HA-VSMCs were co-transfected with miR-34c mimics and pcDNA3.1-PDGFR-ß. The results indicated that PDGFR-ß reversed the biological function of miR-34c mimic. The results revealed the potential application value of miR-34c as a marker molecule of phenotypic transformation, providing a potential target for improving phenotypic transformation.


Assuntos
Becaplermina/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirtuína 1/metabolismo , Aorta/citologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Humanos , Hipertensão/genética , Hipertensão/metabolismo , MicroRNAs/genética , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transfecção , Remodelação Vascular/genética
2.
Front Neurol ; 8: 150, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469595

RESUMO

Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating and complicated disease with significant morbidity and mortality. Previous studies have shown that genetic susceptibility may play an important role in the outcome of a given individual with aSAH. This study evaluates the potential association in effects of the APOE allele on the early brain injury (EBI) in light of elevated intracranial pressure (ICP) and cerebral perfusion disorders in a consecutive series of non-comatose Chinese patients with aSAH. A total of 122 patients with aSAH (54 males and 68 females) were enrolled in this study. Demographic and clinical data were collected. We measured ICP before microsurgical clipping or endovascular coiling during the first 72 h after aneurysm rupture. Computed tomography perfusion (CTP) examination in patients was performed before treatment. The distributions of APOE genotypes and alleles matched Hardy-Weinberg law (p > 0.05). In this study, 68 patients (55.7%) had a normal ICP, whereas 54 (44.3%) had an elevated ICP. Fourteen of 21 patients with APOE ε4 had an elevated ICP, which was significantly different from those without APOE ε4 (p = 0.03). The patients with the ε4 allele had a higher incidence of elevated ICP [p = 0.009, 95% confidence interval (CI) = 1.481-15.432, odds ratio = 4.780] than those without this allele. For CTP measurements, a lower mean cerebral blood flow (difference, -4.74; 95% CI, 0.53-8.94 s, p = 0.03), longer mean transit time (difference, 0.47; 95% CI, -0.87 to -0.78, p = 0.02), and time-to-peak (difference, 2.29; 95% CI, -3.64 to -0.93 s, p = 0.02) were observed in patients with ε4 allele than in those without in the internal capsule regions. In conclusion, the APOE ε4 allele predisposes patients to elevated ICP and perfusion disorders in white matter regions during the first 72 h after aSAH. The presence of an APOE ε4 allele plays an important role in the EBI response to aSAH.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa