Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 208(12): 2795-2805, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35688466

RESUMO

Defensins are a major class of antimicrobial peptides that facilitate the immune system to resist pathogen infection. To date, only ß-defensins have been identified in pigs. In our previous studies, porcine ß-defensin 2 (PBD-2) was shown to have both bactericidal activity and modulatory roles on inflammation. PBD-2 can interact with the cell surface TLR4 and interfere with the NF-κB signaling pathway to suppress the inflammatory response. In this study, the intracellular functions of PBD-2 were investigated. The fluorescently labeled PBD-2 could actively enter mouse macrophage cells. Proteomic analysis indicated that 37 proteins potentially interacted with PBD-2, among which vasohibin-1 (VASH1) was further tested. LPS, an inflammation inducer, suppressed the expression of VASH1, whereas PBD-2 inhibited this effect. PBD-2 inhibited LPS-induced activation of Akt, expression and release of the inflammatory mediators vascular endothelial growth factor and NO, and cell damage. A follow-up VASH1 knockdown assay validated the specificity of the above observations. In addition, PBD-2 inhibited LPS-induced NF-κB activation via Akt. The inhibition effects of PBD-2 on LPS triggered suppression of VASH1 and activation of Akt, and NF-κB and inflammatory cytokines were also confirmed using pig alveolar macrophage 3D4/21 cells. Therefore, the data indicate that PBD-2 interacts with intracellular VASH1, which inhibits the LPS-induced Akt/NF-κB signaling pathway, resulting in suppression of inflammatory responses. Together with our previous findings, we conclude that PBD-2 interacts with both the cell surface receptor (TLR4) and also with the intracellular receptor (VASH1) to control inflammation, thereby providing insights into the immunomodulatory roles of defensins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , NF-kappa B , beta-Defensinas , Animais , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos , Receptor 4 Toll-Like , Fator A de Crescimento do Endotélio Vascular/farmacologia , beta-Defensinas/farmacologia
2.
Virol J ; 17(1): 18, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014007

RESUMO

BACKGROUND: Porcine ß-defensin 2 (PBD-2), produced by host cells, is an antimicrobial cysteine-rich cationic peptide with multi-functions. Previous studies have demonstrated that PBD-2 can kill various bacteria, regulate host immune responses and promote growth of piglets. However, the antiviral role of PBD-2 is rarely investigated. This study aimed to reveal the antiviral ability of PBD-2 against pseudorabies virus (PRV), the causative pathogen of Aujeszky's disease, in PK-15 cells and in a PBD-2 expressing transgenic (TG) mouse model. METHODS: In this study, the cytotoxicity of PBD-2 on PK-15 cells was measured by CCK-8 assay. PK-15 cells were incubated with PRV pre-treated with different concentrations of PBD-2 and PRV titers in cell culture supernatants were determined by real-time quantitative PCR (RT-qPCR). TG mice and wild-type (WT) mice were intraperitoneally injected with PRV and the survival rate was recorded for 10 days. Meanwhile, tissue lesions in brain, spleen and liver of infected mice were observed and the viral loads of PRV in brain, liver and lung were analyzed by RT-qPCR. RESULTS: PBD-2 at a maximum concentration of 80 µg/mL displayed no significant cytotoxicity on PK-15 cells. A threshold concentration of PBD-2 at 40 µg/mL was required to inhibit PRV proliferation in PK-15 cells. The survival rate in PBD-2 TG mice was 50% higher than that of WT mice. In addition, TG mice showed alleviated tissue lesions in brain, spleen and liver compared with their WT littermates after PRV challenge, while viral loads of PRV in brain, liver and lung of TG mice were significantly lower than that of WT mice. CONCLUSIONS: PBD-2 could inhibit PRV proliferation in PK-15 cells and protect mice from PRV infection, which confirmed the antiviral ability of PBD-2 both in vitro and in vivo. The application of PBD-2 in developing anti-viral drugs or disease-resistant animals can be further investigated.


Assuntos
Antivirais/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Pseudorraiva/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , beta-Defensinas/farmacologia , Animais , Linhagem Celular , Herpesvirus Suídeo 1/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/virologia , Carga Viral/efeitos dos fármacos
3.
Nat Nanotechnol ; 19(3): 376-386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158436

RESUMO

Nanoparticles (NPs) represent an important advance for delivering diagnostic and therapeutic agents across the blood-brain barrier. However, NP clearance is critical for safety and therapeutic applicability. Here we report on a study of the clearance of model organic and inorganic NPs from the brain. We find that microglial extracellular vesicles (EVs) play a crucial role in the clearance of inorganic and organic NPs from the brain. Inorganic NPs, unlike organic NPs, perturb the biogenesis of microglial EVs through the inhibition of ERK1/2 signalling. This increases the accumulation of inorganic NPs in microglia, hindering their elimination via the paravascular route. We also demonstrate that stimulating the release of microglial EVs by an ERK1/2 activator increased the paravascular glymphatic pathway-mediated brain clearance of inorganic NPs. These findings highlight the modulatory role of microglial EVs on the distinct patterns of the clearance of organic and inorganic NPs from the brain and provide a strategy for modulating the intracerebral fate of NPs.


Assuntos
Vesículas Extracelulares , Nanopartículas , Microglia , Barreira Hematoencefálica , Encéfalo , Nanopartículas/uso terapêutico
4.
Adv Mater ; : e2405323, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718295

RESUMO

Protein therapeutics are anticipated to offer significant treatment options for central nervous system (CNS) diseases. However, the majority of proteins are unable to traverse the blood-brain barrier (BBB) and reach their CNS target sites. Inspired by the natural environment of active proteins, the cell matrix components hyaluronic acid (HA) and protamine (PRTM) are used to self-assemble with proteins to form a protein-loaded biomimetic core and then incorporated into ApoE3-reconstituted high-density lipoprotein (rHDL) to form a protein-loaded biomimetic nanocarrier (Protein-HA-PRTM-rHDL). This cell matrix-inspired biomimetic nanocarrier facilitates the penetration of protein therapeutics across the BBB and enables their access to intracellular target sites. Specifically, CAT-HA-PRTM-rHDL facilitates rapid intracellular delivery and release of catalase (CAT) via macropinocytosis-activated membrane fusion, resulting in improved spatial learning and memory in traumatic brain injury (TBI) model mice (significantly reduces the latency of TBI mice and doubles the number of crossing platforms), and enhances motor function and prolongs survival in amyotrophic lateral sclerosis (ALS) model mice (extended the median survival of ALS mice by more than 10 days). Collectively, this cell matrix-inspired nanoplatform enables the efficient CNS delivery of protein therapeutics and provides a novel approach for the treatment of CNS diseases.

5.
Adv Sci (Weinh) ; 10(7): e2204596, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36703613

RESUMO

Mitochondrial dysfunction has been recognized as the key pathogenesis of most neurodegenerative diseases including Alzheimer's disease (AD). The dysregulation of mitochondrial calcium ion (Ca2+ ) homeostasis and the mitochondrial permeability transition pore (mPTP), is a critical upstream signaling pathway that contributes to the mitochondrial dysfunction cascade in AD pathogenesis. Herein, a "two-hit braking" therapeutic strategy to synergistically halt mitochondrial Ca2+ overload and mPTP opening to put the mitochondrial dysfunction cascade on a brake is proposed. To achieve this goal, magnesium ion (Mg2+ ), a natural Ca2+ antagonist, and siRNA to the central mPTP regulator cyclophilin D (CypD), are co-encapsulated into the designed nano-brake; A matrix metalloproteinase 9 (MMP9) activatable cell-penetrating peptide (MAP) is anchored on the surface of nano-brake to overcome the blood-brain barrier (BBB) and realize targeted delivery to the mitochondrial dysfunction cells of the brain. Nano-brake treatment efficiently halts the mitochondrial dysfunction cascade in the cerebrovascular endothelial cells, neurons, and microglia and powerfully alleviates AD neuropathology and rescues cognitive deficits. These findings collectively demonstrate the potential of advanced design of nanotherapeutics to halt the key upstream signaling pathways of mitochondrial dysfunction to provide a powerful strategy for AD modifying therapy.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Mitocôndrias , Nanoestruturas , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Cognição , Peptidil-Prolil Isomerase F/metabolismo , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Nanoestruturas/química , Nanoestruturas/uso terapêutico
6.
Acta Pharm Sin B ; 12(4): 2043-2056, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847504

RESUMO

The presence of protein corona on the surface of nanoparticles modulates their physiological interactions such as cellular association and targeting property. It has been shown that α-mangostin (αM)-loaded poly(ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles (NP-αM) specifically increased low density lipoprotein receptor (LDLR) expression in microglia and improved clearance of amyloid beta (Aß) after multiple administration. However, how do the nanoparticles cross the blood‒brain barrier and access microglia remain unknown. Here, we studied the brain delivery property of PEG-PLA nanoparticles under different conditions, finding that the nanoparticles exhibited higher brain transport efficiency and microglia uptake efficiency after αM loading and multiple administration. To reveal the mechanism, we performed proteomic analysis to characterize the composition of protein corona formed under various conditions, finding that both drug loading and multiple dosing affect the composition of protein corona and subsequently influence the cellular uptake of nanoparticles in b.End3 and BV-2 cells. Complement proteins, immunoglobulins, RAB5A and CD36 were found to be enriched in the corona and associated with the process of nanoparticles uptake. Collectively, we bring a mechanistic understanding about the modulator role of protein corona on targeted drug delivery, and provide theoretical basis for engineering brain or microglia-specific targeted delivery system.

7.
Antiviral Res ; 201: 105292, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341807

RESUMO

Swine influenza virus (SIV) not only brings about great economic losses on the global pig industry, it also poses a significant threat to the public health for its interspecies transmission capacity. Porcine ß-defensin 2 (PBD-2) is a host defense peptide and our previous study has shown that PBD-2 inhibits proliferation of enveloped pseudorabies virus both in vitro and in transgenic (TG) mice. The aim of this study is to investigate the possible anti-SIV ability of PBD-2 in a TG pig model created in our previous study. The in-contact challenge trial demonstrated that overexpression of PBD-2 in pigs could efficiently alleviate SIV-associated clinical signs. The SIV titers quantified by EID50 in lung tissues of infected TG pigs were significantly lower than that of wild-type littermates. In vitro, the cell viability assay revealed that PBD-2 mainly interfered with viral entry and post-infection stages. It was further confirmed that PBD-2 could enter porcine tracheal epithelial cells. The proteins interacting with PBD-2 inside host cells were identified with immunoprecipitation and the pathways involved were analyzed. Results showed that PBD-2 could interact with pro-apoptotic solute carrier family 25 member 4 (SLC25A4), also known as adenine nucleotide translocase 1, and thereby inhibited SIV-induced cell apoptosis. The molecular docking analysis suggested that PBD-2 interacted with porcine SLC25A4 mainly through strong hydrogen binding, with the predicted binding affinity being -13.23 kcal/mol. Altogether, these indicate that PBD-2 protects pigs against SIV infection, which may result from its role as a SLC25A4 blocker to alleviate cell apoptosis, providing a novel therapeutic and prophylactic strategy of using PBD-2 to combat SIV.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , beta-Defensinas , Animais , Apoptose , Humanos , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Infecções por Orthomyxoviridae/prevenção & controle , Suínos , Doenças dos Suínos/prevenção & controle , beta-Defensinas/genética , beta-Defensinas/farmacologia
8.
Adv Sci (Weinh) ; 8(2): 2001918, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511002

RESUMO

Cerebrovascular dysfunction characterized by the neurovascular unit (NVU) impairment contributes to the pathogenesis of Alzheimer's disease (AD). In this study, a cerebrovascular-targeting multifunctional lipoprotein-biomimetic nanostructure (RAP-RL) constituted with an antagonist peptide (RAP) of receptor for advanced glycation end-products (RAGE), monosialotetrahexosyl ganglioside, and apolipoprotein E3 is developed to recover the functional NVU and normalize the cerebral vasculature. RAP-RL accumulates along the cerebral microvasculature through the specific binding of RAP to RAGE, which is overexpressed on cerebral endothelial cells in AD. It effectively accelerates the clearance of perivascular Aß, normalizes the morphology and functions of cerebrovasculature, and restores the structural integrity and functions of NVU. RAP-RL markedly rescues the spatial learning and memory in APP/PS1 mice. Collectively, this study demonstrates the potential of the multifunctional nanostructure RAP-RL as a disease-modifying modality for AD treatment and provides the proof of concept that remodeling the functional NVU may represent a promising therapeutic approach toward effective intervention of AD.

9.
Genes (Basel) ; 11(8)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824735

RESUMO

Porcine ß-defensin 2 (PBD-2), expressed by different tissues of pigs, is a multifunctional cationic peptide with antimicrobial, immunomodulatory and growth-promoting abilities. As the latest generation of genome-editing tool, CRISPR/Cas9 system makes it possible to enhance the expression of PBD-2 in pigs by site-specific knock-in of pbd-2 gene into the pig genome. In this study, we aimed to generate marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems. Two copies of pbd-2 gene linked by a T2A sequence were inserted into the porcine Rosa26 locus through CRISPR/Cas9-mediated homology-directed repair. The floxed selectable marker gene neoR, used for G418 screening of positive cell clones, was removed by cell-penetrating Cre recombinase with a recombination efficiency of 48.3%. Cloned piglets were produced via somatic cell nuclear transfer and correct insertion of pbd-2 genes was confirmed by PCR and Southern blot. Immunohistochemistry and immunofluorescence analyses indicated that expression levels of PBD-2 in different tissues of transgenic (TG) piglets were significantly higher than those of their wild-type (WT) littermates. Bactericidal assays demonstrated that there was a significant increase in the antimicrobial properties of the cell culture supernatants of porcine ear fibroblasts from the TG pigs in comparison to those from the WT pigs. Altogether, our study improved the protein expression level of PBD-2 in pigs by site-specific integration of pbd-2 into the pig genome, which not only provided an effective pig model to study the anti-infection mechanisms of PBD-2 but also a promising genetic material for the breeding of disease-resistant pigs.


Assuntos
Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Técnicas de Introdução de Genes , Marcação de Genes , Recombinação Homóloga , Integrases/metabolismo , beta-Defensinas/genética , Animais , Células Cultivadas , Resistência à Doença/genética , Fibroblastos/metabolismo , Edição de Genes , Expressão Gênica , Ordem dos Genes , Fenótipo , Plasmídeos/genética , Suínos
10.
Antibiotics (Basel) ; 9(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327385

RESUMO

As the causative agent of Glässer's disease, Glaesserella (Haemophilus) parasuis has led to serious economic losses to the swine industry worldwide. Due to the low cross-protection of vaccines and increasing antimicrobial resistance of G. parasuis, it is important to develop alternative approaches to prevent G. parasuis infection. Defensins are host defense peptides that have been suggested to be promising substitutes for antibiotics in animal production, while porcine ß-defensin 2 (PBD-2) is a potent antimicrobial peptide discovered in pigs. Our previous study generated transgenic (TG) pigs overexpressing PBD-2, which displayed enhanced resistance to Actinobacillus pleuropneumoniae. In this study, the antibacterial activities of PBD-2 against G. parasuis are determined in vitro and in the TG pig model. The concentration-dependent bactericidal activity of synthetic PBD-2 against G. parasuis was measured by bacterial counting. Moreover, after being infected with G. parasuis via a cohabitation challenge model, TG pigs overexpressing PBD-2 displayed significantly milder clinical signs and less severe gross pathological changes than their wild-type (WT) littermates. The TG pigs also exhibited alleviated lung and brain lesions, while bacterial loads in the lung and brain tissues of the TG pigs were significantly lower than those of the WT pigs. Additionally, lung and brain homogenates from TG pigs possessed enhanced antibacterial activity against G. parasuis when compared with those from the WT pigs. Altogether, these proved that overexpression of PBD-2 could also endow pigs with increased resilience to G. parasuis infection, which further confirmed the potential of using the PBD-2 coding gene to develop disease-resistant pigs and provided a novel strategy to combat G. parasuis as well.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa