Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5576-5584, 2021 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-34951209

RESUMO

Ischemic cardiovascular and cerebrovascular diseases threatening human health and survival have high morbidity and mortality. The common cause of them is reduced blood supply caused by vascular stenosis, atherosclerosis, and infarction. However,the pathological processes of ischemic cardiovascular and cerebrovascular diseases are complex, involving oxidative stress, calcium overload, inflammation, apoptosis, autophagy and other mechanisms. Protein drugs such as recombinant tissue plasminogen activator(rt-PA) and urokinase have been proved with excellent therapeutic effects and huge economic and social benefits in the clinical treatment and interventional therapy. Among them, peptide drugs have shown unique advantages and potential prospects owing to their strong biological activity, high target specificity, biochemical diversity, and low toxicity. Chinese medicinal materials, characterized by multi-component and multi-target therapy, have also shown excellent clinical efficacy against ischemic cardiovascular and cerebrovascular diseases. However, the research and development of related peptides in Chinese medicinal materials is at the initial stage. Therefore, this paper reviewed the targets and action mechanisms of a variety of Chinese medicinal material-derived polypeptides with activities against ischemic cardiovascular and cerebrovascular diseases, aiming to provide support for the in-depth research as well as the clinical development and application of these polypeptides.


Assuntos
Transtornos Cerebrovasculares , Medicamentos de Ervas Chinesas , Transtornos Cerebrovasculares/tratamento farmacológico , China , Humanos , Medicina Tradicional Chinesa , Peptídeos , Ativador de Plasminogênio Tecidual
2.
Chin J Integr Med ; 29(12): 1066-1076, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37608040

RESUMO

OBJECTIVE: To explore the protective effect of Huoxin Pill (HXP) on acute myocardial ischemia-reperfusion (MIRI) injury in rats. METHODS: Seventy-five adult SD rats were divided into the sham-operated group, model group, positive drug group (diltiazem hydrochloride, DH), high dose group (24 mg/kg, HXP-H) and low dose group (12 mg/kg, HXP-L) of Huoxin Pill (n=15 for every group) according to the complete randomization method. After 1 week of intragastric administration, the left anterior descending coronary artery of the rat's heart was ligated for 45 min and reperfused for 3 h. Serum was separated and the levels of creatine kinase (CK), creatine kinase isoenzyme (CK-MB) and lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), hypersensitive C-reactive protein (hs-CRP) and interleukin-1ß (IL-1ß) were measured. Myocardial ischemia rate, myocardial infarction rate and myocardial no-reflow rate were determined by staining with Evans blue and 2,3,5-triphenyltetrazolium chloride (TTC). Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN) databases were used to screen for possible active compounds of HXP and their potential therapeutic targets; the results of anti-inflammatory genes associated with MIRI were obtained from GeneCards, Drugbank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Datebase (TTD) databases was performed; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were used to analyze the intersected targets; molecular docking was performed using AutoDock Tools. Western blot was used to detect the protein expression of Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NFκB)/NOD-like receptor protein 3 (NLRP3). RESULTS: Compared with the model group, all doses of HXP significantly reduced the levels of LDH, CK and CK-MB (P<0.05, P<0.01); HXP significantly increased serum activity of SOD (P<0.05, P<0.01); all doses of HXP significantly reduced the levels of hs-CRP and IL-1ß (P<0.05, P<0.01) and the myocardial infarction rate and myocardial no-reflow rate (P<0.01). GO enrichment analysis mainly involved positive regulation of gene expression, extracellular space and identical protein binding, KEGG pathway enrichment mainly involved PI3K-Akt signaling pathway and lipid and atherosclerosis. Molecular docking results showed that kaempferol and luteolin had a better affinity with TLR4, NFκB and NLRP3 molecules. The protein expressions of TLR4, NFκB and NLRP3 were reduced in the HXP group (P<0.01). CONCLUSIONS: HXP has a significant protective effect on myocardial ischemia-reperfusion injury in rats, and its effect may be related to the inhibition of redox response and reduction of the inflammatory response by inhibiting the TLR4NFκB/NLRP3 signaling pathway.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Proteína C-Reativa , Receptor 4 Toll-Like , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Creatina Quinase , L-Lactato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa