RESUMO
Bioactive compounds (BACs) have attracted much attention due to their potential health benefits. However, such substances have problems such as difficulty dissolving in water, poor stability, and low intestinal absorption, leading to serious limitations in practical applications. Nowadays, food colloidal delivery carriers have become a highly promising solution due to their safety, controllability, and efficiency. The use of natural macromolecules to construct delivery carriers can not only regulate the solubility, stability, and intestinal absorption of BACs but also effectively enhance the nutritional added value of functional foods, improve sensory properties, and extend shelf life. Moreover, smart-responsive colloidal delivery carriers can control the release characteristics of BACs, thus improving their absorption rate in the human body. This review describes the characteristics of several typical food colloid delivery carriers, focuses on their physical properties from static structure to dynamic release, summarizes their applications in delivery systems, and provides an outlook on the future development of food colloid delivery carriers. The different compositions and structures of food colloids tend to affect their stability and release behaviors, and the different surface properties and rheological characteristics of the carriers predestine their different application scenarios. The control of in vivo release properties and the effect on food media should be emphasized in the future exploration of safer and more controllable carrier systems.
RESUMO
Boron-containing organosilicon polymers are widely used under harsh environments as preceramic polymers for advanced ceramics fabrication. However, harmful chemicals released during synthesis and the complex synthesis routes have limited their applications. To solve the problems, a two-component route was adopted to synthesize cross-linked boron-containing silicone polymer (CPBCS) via a solventless process. The boron content and CPBCSs' polymeric structures could be readily tuned through controlling the ratio of multifunctional boron hybrid silazane monomers (BSZ12) and poly[imino(methylsilylene)]. The CPBCSs showed high thermal stability and good mechanical properties. The CPBCS with Si-H/C=C ratio of 10:1 showed 75 wt% char yields at 1000 °C in argon, and the heat release capacity (HRC) and total heat release (THR) are determined to be 37.9 J/g K and 6.2 KJ/g, demonstrating high thermal stability and flame retardancy. The reduced modulus and hardness of CPBCS are 0.30 GPa and 2.32 GPa, respectively. The novel polysilazanes can be potentially used under harsh environments, such as high temperatures or fire hazards.