Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
BMC Vet Res ; 20(1): 243, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835040

RESUMO

BACKGROUND: The liver-expressed antimicrobial peptide 2 (LEAP2) plays a pivotal role in the host's immune response against pathogenic microorganisms. Numerous such antimicrobial peptides have recently been shown to mitigate infection risk in fish, and studying those harboured by the economically important fish Acrossocheilus fasciatus is imperative for enhancing its immune responses against pathogenic microorganisms. In this study, we cloned and sequenced LEAP2 cDNA from A. fasciatus to examine its expression in immune tissues and investigate the structure-activity relationships of its intramolecular disulphide bonds. RESULTS: The predicted amino acid sequence of A. fasciatus LEAP2 was found to include a signal peptide, pro-domain, and mature peptide. Sequence analysis indicated that A. fasciatus LEAP2 is a member of the fish LEAP2A cluster and is closely related to Cyprinus carpio LEAP2A. A. fasciatus LEAP2 transcripts were expressed in various tissues, with the head kidney exhibiting the highest mRNA levels. Upon exposure to Aeromonas hydrophila infection, LEAP2 expression was significantly upregulated in the liver, head kidney, and spleen. A mature peptide of A. fasciatus LEAP2, consisting of two disulphide bonds (Af-LEAP2-cys), and a linear form of the LEAP2 mature peptide (Af-LEAP2) were chemically synthesised. The circular dichroism spectroscopy result shows differences between the secondary structures of Af-LEAP2 and Af-LEAP2-cys, with a lower proportion of alpha helix and a higher proportion of random coil in Af-LEAP2. Af-LEAP2 exhibited potent antimicrobial activity against most tested bacteria, including Acinetobacter guillouiae, Pseudomonas aeruginosa, Staphylococcus saprophyticus, and Staphylococcus warneri. In contrast, Af-LEAP2-cys demonstrated weak or no antibacterial activity against the tested bacteria. Af-LEAP2 had a disruptive effect on bacterial cell membrane integrity, whereas Af-LEAP2-cys did not exhibit this effect. Additionally, neither Af-LEAP2 nor Af-LEAP2-cys displayed any observable ability to hydrolyse the genomic DNA of P. aeruginosa. CONCLUSIONS: Our study provides clear evidence that linear LEAP2 exhibits better antibacterial activity than oxidised LEAP2, thereby confirming, for the first time, this phenomenon in fish.


Assuntos
Sequência de Aminoácidos , Animais , Relação Estrutura-Atividade , Doenças dos Peixes/microbiologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/genética , Proteínas de Peixes/genética , Proteínas de Peixes/química , Dissulfetos/química , Filogenia , Aeromonas hydrophila/efeitos dos fármacos , Sequência de Bases
2.
Ecotoxicol Environ Saf ; 278: 116404, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705038

RESUMO

Manganese (Mn) is an essential trace element for maintaining bodily functions. Excessive exposure to Mn can pose serious health risks to humans and animals, particularly to the nervous system. While Mn has been implicated as a neurotoxin, the exact mechanism of its toxicity remains unclear. Ferroptosis is a form of programmed cell death that results from iron-dependent lipid peroxidation. It plays a role in various physiological and pathological cellular processes and may be closely related to Mn-induced neurotoxicity. However, the mechanism of ferroptosis in Mn-induced neurotoxicity has not been thoroughly investigated. Therefore, this study aims to investigate the role and mechanism of ferroptosis in Mn-induced neurotoxicity. Using bioinformatics, we identified significant changes in genes associated with ferroptosis in Mn-exposed animal and cellular models. We then evaluated the role of ferroptosis in Mn-induced neurotoxicity at both the animal and cellular levels. Our findings suggest that Mn exposure causes weight loss and nervous system damage in mice. In vitro and in vivo experiments have shown that exposure to Mn increases malondialdehyde, reactive oxygen species, and ferrous iron, while decreasing glutathione and adenosine triphosphate. These findings suggest that Mn exposure leads to a significant increase in lipid peroxidation and disrupts iron metabolism, resulting in oxidative stress injury and ferroptosis. Furthermore, we assessed the expression levels of proteins and mRNAs related to ferroptosis, confirming its significant involvement in Mn-induced neurotoxicity.


Assuntos
Ferroptose , Sobrecarga de Ferro , Peroxidação de Lipídeos , Manganês , Oxirredução , Ferroptose/efeitos dos fármacos , Animais , Manganês/toxicidade , Camundongos , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Masculino , Ferro/toxicidade , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos
3.
J Neuroinflammation ; 17(1): 200, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611425

RESUMO

BACKGROUND: Astrocytes are crucial regulators in the central nervous system. Abnormal activation of astrocytes contributes to some behavior deficits. However, mechanisms underlying the effects remain unclear. Here, we studied the activation of A1 astrocytes and their contribution to murine behavior deficits. METHODS: A1 astrocytes were induced by treatment with lipopolysaccharide (LPS) in vitro. The functional phenotype of astrocytes was determined by quantitative RT-PCR, ELISA, and immunohistochemistry. To assess the role of A1 astrocytes in vivo, mice were injected intraperitoneally with LPS. Then, murine behaviors were tested, and the hippocampus and cortex were analyzed by quantitative RT-PCR, ELISA, and immunohistochemistry. The function of IL-10 and fluorocitrate on A1 astrocyte activation was also examined. RESULTS: Our results show that astrocytes isolated from B6.129S6-Il10tm1Flv/J homozygotes (IL-10tm1/tm1) were prone to characteristics of A1 reactive astrocytes. Compared with their wild-type counterparts, IL-10tm1/tm1 astrocytes exhibited higher expression of glial fibrillary acidic protein (GFAP). Whether or not they were stimulated with LPS, IL-10tm1/tm1 astrocytes exhibited enhanced expression of A1-specific transcripts and proinflammatory factors IL-1ß, IL-6, and TNFα. In addition, IL-10tm1/tm1 astrocytes demonstrated hyperphosphorylation of STAT3. Moreover, astrocytes from IL-10tm1/tm1 mice showed attenuated phagocytic ability and were neurotoxic. IL-10tm1/tm1 mice demonstrated increased immobility time in the forced swim test and defective learning and memory behavior in the Morris water maze test. Moreover, enhanced neuroinflammation was found in the hippocampus and cortex of IL-10tm1/tm1 mice, accompanying with more GFAP-positive astrocytes and severe neuron loss in the hippocampus. Pretreatment IL-10tm1/tm1 mice with IL-10 or fluorocitrate decreased the expression of proinflammatory factors and A1-specific transcripts in the hippocampus and cortex, and then alleviated LPS-induced depressive-like behavior. CONCLUSION: These results demonstrate that astrocytes isolated from B6.129S6-Il10tm1Flv/J homozygotes are prone to A1 phenotype and contribute to the depression-like behavior and memory deficits. Inhibiting A1 astrocyte activation may be an attractive therapeutic strategy in some neurodegenerative diseases.


Assuntos
Astrócitos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Citratos/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Depressão/tratamento farmacológico , Interleucina-10/farmacologia , Animais , Astrócitos/metabolismo , Comportamento Animal/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Citratos/uso terapêutico , Disfunção Cognitiva/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-10/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos
4.
J Cell Mol Med ; 23(5): 3737-3746, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30895711

RESUMO

Adipose-derived stem cells (ASCs) are highly attractive for cell-based therapies in tissue repair and regeneration because they have multilineage differentiation capacity and are immunosuppressive. However, the detailed epigenetic mechanisms of their immunoregulatory capacity are not fully defined. In this study, we found that Mysm1 was induced in ASCs treated with inflammatory cytokines. Adipose-derived stem cells with Mysm1 knockdown exhibited attenuated immunosuppressive capacity, evidenced by less inhibition of T cell proliferation, more pro-inflammatory factor secretion and less nitric oxide (NO) production in vitro. Mysm1-deficient ASCs exacerbated inflammatory bowel diseases but inhibited tumour growth in vivo. Mysm1-deficient ASCs also showed depressed miR-150 expression. When transduced with Mysm1 overexpression lentivirus, ASCs exhibited enhanced miR-150 expression. Furthermore, Mysm1-deficient cells transduced with lentivirus containing miR-150 mimics produced less pro-inflammatory factors and more NO. Our study reveals a new role of Mysm1 in regulating the immunomodulatory activities of ASCs by targeting miR-150. These novel insights into the mechanisms through which ASCs regulate immune reactions may lead to better clinical utility of these cells.


Assuntos
Tecido Adiposo/citologia , Epigênese Genética/imunologia , MicroRNAs/imunologia , Células-Tronco/imunologia , Transativadores/imunologia , Proteases Específicas de Ubiquitina/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Interferon gama/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Óxido Nítrico/imunologia , Óxido Nítrico/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transativadores/genética , Transativadores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
5.
Biomacromolecules ; 20(2): 1007-1017, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30616345

RESUMO

Understanding the fundamental cell-material interactions is essential to designing functional materials for biomedical applications. Although mesenchymal stromal cells (MSCs) are known to secrete cytokines and exosomes that are effective to treat degenerative diseases, the inherent property of biomaterials to modulate the therapeutic function of MSCs remains to be investigated. Here, a multivalent cell-membrane adhesive conjugate was generated through polyamindoamine (PAMAM) and an oligopeptide, IKVAV, and the conjugate was further complexed with hyaluronic acid (HA). The adhesive particulates were used to coat the surface of adipose-derived mesenchymal stromal cells (Ad-MSCs) and studied in the MSC spheroid culture. The analysis showed that the adhesive complexes formed via PAMAM conjugates and HA significantly promoted the proliferation and the gene expression of pro-angiogenesis cytokines in MSCs; the production of anti-inflammatory miRNAs in exosomes could also be elevated. The transplantation of the Ad-MSCs primed with PAMAM-IKVAV/HA composite particulates in a rat myocardial infarction model further demonstrated the beneficial effects of membrane-binding materials on improving the cell retention and tissue angiogenesis. The new function of membrane-binding adhesive materials potentially provides useful ways to improve cell-based therapy.


Assuntos
Adesivos/química , Adesivos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Ácido Hialurônico/química , Inflamação/tratamento farmacológico , Laminina/química , Masculino , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Poliaminas/química , Ratos , Ratos Sprague-Dawley
6.
Med Sci Monit ; 25: 5299-5305, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31311916

RESUMO

BACKGROUND Acute respiratory distress syndrome (ARDS) is a common acute and severe disease in clinic. Recent studies indicated that Cxc chemokine ligand 5 (CXCL5), an inflammatory chemokine, was associated with tumorigenesis. The present study investigated the role of the CXCL5/Cxc chemokine receptor 2 (CXCR2) bio-axis in ARDS, and explored the underlying molecular mechanism. MATERIAL AND METHODS The pathological morphology of lung tissue and degree of pulmonary edema were assessed by hematoxylin-eosin staining and pulmonary edema score, respectively. Real-time PCR and Western blot analysis were performed to detect the expression levels of CXCL5, CXCR2, Matrix metalloproteinases 2 (MMP2), and Matrix metalloproteinases 9 (MMP9) in lung tissues. Enzyme-linked immunosorbent assay (ELISA) was performed to determine the expression levels of CXCL5 and inflammatory factors (IL-1ß, IL-6, TNF-alpha, and IL-10) in serum. RESULTS The results demonstrated that diffuse alveolar damage and pulmonary edema appeared in lipopolysaccharide (LPS)-induced ARDS and were positively correlated with the severity of ARDS. In addition, CXCL5 and its receptor CXCR2 were overexpressed by upregulation of MMP2 and MMP9 in lung tissues of ARDS. In addition, CXCL5 neutralizing antibody effectively alleviated inflammatory response, diffuse alveolar damage, and pulmonary edema, and decreased the expression levels of MMP2 and MMP9 compared to LPS-induced ARDS. CONCLUSIONS We found that CXCL5/CXCR2 accelerated the progression of ARDS, partly by upregulation of MMP2 and MMP9 in lung tissues with the release of inflammatory factors.


Assuntos
Quimiocina CXCL5/metabolismo , Receptores de Interleucina-8B/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Animais , Quimiocinas CXC/metabolismo , Modelos Animais de Doenças , Pulmão/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo
7.
Mol Biol Rep ; 45(6): 2393-2401, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30386973

RESUMO

Macrophages play pivotal roles in innate and adaptive immune response, tissue homeostasis and cancer development. Their development and heterogeneity are tightly controlled by epigenetic program and transcription factors. Deubiquitinase Mysm1 plays crucial roles in regulating stem cell maintenance and immune cell development. Here we show that Mysm1 expression is up regulated during bone marrow macrophage development. Mysm1 deficient cells exhibit accelerating proliferation with more cells going to S phase and higher cyclin D1, cyclin D2 and c-Myc expression. However, compared to WT counterparts, more cell death is also detected in Mysm1 deficient cells no matter M-CSF deprived or not. In LPS-condition medium, Mysm1-/- macrophages show more pro-inflammatory factors IL-1ß, TNFα and iNOS production. In addition, much higher expression of surface marker CD86 is detected in Mysm1-/- macrophages. In vivo tumor model data demonstrate that in contrast to WT macrophages promoting tumor growth, Mysm1-/- macrophages inhibit tumor growth, showing the properties of M1 macrophages. Collectively, these data indicate that Mysm1 is essential for macrophage survival and plays an important role in macrophage polarization and might be a target for cell therapy.


Assuntos
Endopeptidases/metabolismo , Macrófagos/metabolismo , Animais , Apoptose , Ciclo Celular/fisiologia , Diferenciação Celular , Células Cultivadas , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/fisiologia , Regulação da Expressão Gênica/genética , Camundongos Knockout , Células-Tronco , Transativadores , Fatores de Transcrição , Proteases Específicas de Ubiquitina , Ubiquitinação/fisiologia
8.
Neurochem Res ; 42(5): 1394-1402, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28290133

RESUMO

γ-Aminobutyric acid (GABA) is an inhibitory transmitter, acting on receptor channels to reduce neuronal excitability in matured neural systems. However, electrophysiological responses of whole neuronal ensembles to the exposure to GABA are still unclear. We used micro-electrode arrays (MEAs) to study the effects of the increasing amount of GABA on functional network of cortical neural cultures. Then the recorded data were analyzed by the cross-covariance analysis and graph theory. Results showed that after the GABA treatment, the activity parameters of firing rate, bursting rate, bursting duration and network burst frequency in neural cultures decreased as expected. In addition, the functional connectivity also decreased in similarity, network density, and the size of the largest component. However, small-worldness was not found to be influenced by the acute GABA treatment. Our results support the position that using graph theory to evaluate the functional connectivity of neural cultures may enhance understanding of the pharmacological impact of neurotransmitters on neuronal networks.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Ácido gama-Aminobutírico/administração & dosagem , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/embriologia , Feminino , Rede Nervosa/embriologia , Gravidez , Ratos , Ratos Sprague-Dawley
9.
Int J Syst Evol Microbiol ; 67(3): 565-569, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27902244

RESUMO

A novel Gram-stain-negative bacterium, designated strain PC-2T, was isolated from penicillin fermentation fungi residue with pig manure co-compost in China. Phylogenetic analysis, based on 16S rRNA gene sequence comparisons, revealed that strain PC-2T should be assigned to the genus Chelatococcus and that it had 98.9 % similarity with Chelatococcus daeguensis, 98.8 % with Chelatococcus sambhunathii, 98.4 %, with Chelatococcus caeni and 96.0 % with Chelatococcus asaccharovorans. The G+C content of genomic DNA was 70.9 mol%. On the basis of the phylogenetic analysis, DNA-DNA relatedness values, phenotypic characteristics and chemotaxonomic data, strain PC-2 T represents a novel species of the genus Chelatococcus, for which the name Chelatococcus composti sp. nov. is proposed. The type strain is PC-2T (=DSM 101465T=CGMCC 1.15283T).


Assuntos
Beijerinckiaceae/classificação , Compostagem , Esterco/microbiologia , Penicilinas/metabolismo , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Beijerinckiaceae/genética , Beijerinckiaceae/isolamento & purificação , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Fungos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos
10.
J Cell Mol Med ; 20(8): 1550-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27028905

RESUMO

Mesenchymal stem cells (MSCs) possess an immunoregulatory capacity and are a therapeutic target for many inflammation-related diseases. However, the detailed mechanisms of MSC-mediated immunosuppression remain unclear. In this study, we provide new information to partly explain the molecular mechanisms of immunoregulation by MSCs. Specifically, we found that A20 expression was induced in MSCs by inflammatory cytokines. Knockdown of A20 in MSCs resulted in increased proliferation and reduced adipogenesis, and partly reversed the suppressive effect of MSCs on T cell proliferation in vitro and inhibited tumour growth in vivo. Mechanistic studies indicated that knockdown of A20 in MSCs inhibited activation of the p38 mitogen-activated protein kinase (MAPK) pathway, which potently promoted the production of tumour necrosis factor (TNF)-α and inhibited the production of interleukin (IL)-10. Collectively, these data reveal a crucial role of A20 in regulating the immunomodulatory activities of MSCs by controlling the expression of TNF-α and IL-10 in an inflammatory environment. These findings provide novel insights into the pathogenesis of various inflammatory-associated diseases, and are a new reference for the future development of treatments for such afflictions.


Assuntos
Células-Tronco Mesenquimais/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Adipogenia , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Proliferação de Células , Forma Celular , Citocinas/metabolismo , Dinoprostona/metabolismo , Técnicas de Silenciamento de Genes , Terapia de Imunossupressão , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , RNA Interferente Pequeno/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
J Mater Sci Mater Med ; 26(9): 234, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26395359

RESUMO

Bioreducible polymers have appeared as the ideal drug carriers for tumor therapy due to their properties of high stability in extracellular circulation and rapid drug release in intracellular reducing environment. Recently, the diselenide bond has emerged as a new reduction-sensitive linkage. In this work, the amphiphilic poly(ethylene glycol)-b-poly(L-lactide) containing diselenide bond has been synthesized and used to load anti-tumor drug, docetaxel (DTX), to form the redox micelles. It was found that the redox micelles showed a rapid response to glutataione (GSH), which resulted in a fast release of DTX in the presence of GSH. In contrast, <40 % of DTX was released from the micelles within 72 h under the normal condition (absence of GSH). The DTX-loaded redox micelles showed the significant inhibition effect to MCF-7 cells, and the cytotoxicity was dependent on the intracellular GSH concentrations. Moreover, considering the potentially clinical applications of the micelles through intravenous injection, the blood compatibility was also studied by the hemolysis analysis, activated partial thromboplastin time, prothrombin time and thromboelastography assays. These results confirmed that the redox micelles showed good blood safety, suggesting a potential application in tumor therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Micelas , Poliésteres/química , Polietilenoglicóis/química , Selênio/química , Glutationa/metabolismo , Hemólise , Humanos , Células MCF-7 , Oxirredução
12.
J Cell Mol Med ; 18(7): 1381-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24779911

RESUMO

The poor survival of cells in ischaemic myocardium is a major obstacle for stem cell therapy. Exendin-4 holds the potential of cardioprotective effect based on its pleiotropic activity. This study investigated whether Exendin-4 in conjunction with adipose-derived stem cells (ADSCs) could improve the stem cell survival and contribute to myocardial repairs after infarction. Myocardial infarction (MI) was induced by the left anterior descending artery ligation in adult male Sprague-Dawley rats. ADSCs carrying double-fusion reporter gene [firefly luciferase and monomeric red fluorescent protein (fluc-mRFP)] were quickly injected into border zone of MI in rats treated with or without Exendin-4. Exendin-4 enhanced the survival of transplanted ADSCs, as demonstrated by the longitudinal in vivo bioluminescence imaging. Moreover, ADSCs adjuvant with Exendin-4 decreased oxidative stress, apoptosis and fibrosis. They also improved myocardial viability and cardiac function and increased the differentiation rates of ADSCs into cardiomyocytes and vascular smooth muscle cells in vivo. Then, ADSCs were exposed to hydrogen peroxide/serum deprivation (H(2)O(2)/SD) to mimic the ischaemic environment in vitro. Results showed that Exendin-4 decreased the apoptosis and enhanced the paracrine effect of ADSCs. In addition, Exendin-4 activated signal transducers and activators of transcription 3 (STAT3) through the phosphorylation of Akt and ERK1/2. Furthermore, Exendin-4 increased the anti-apoptotic protein Bcl-2, but decreased the pro-apoptotic protein Bax of ADSCs. In conclusion, Exendin-4 could improve the survival and therapeutic efficacy of transplanted ADSCs through STAT3 activation via the phosphorylation of Akt and ERK1/2. This study suggests the potential application of Exendin-4 for stem cell-based heart regeneration.


Assuntos
Tecido Adiposo/transplante , Coração/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Peptídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Células-Tronco/citologia , Peçonhas/farmacologia , Tecido Adiposo/citologia , Adjuvantes Imunológicos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimioterapia Adjuvante , Exenatida , Imunofluorescência , Coração/fisiopatologia , Hipoglicemiantes/farmacologia , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Neural Netw ; 175: 106313, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640695

RESUMO

The cortically-coupled target recognition system based on rapid serial visual presentation (RSVP) has a wide range of applications in brain computer interface (BCI) fields such as medical and military. However, in the complex natural environment backgrounds, the identification of event-related potentials (ERP) of both small and similar objects that are quickly presented is a research challenge. Therefore, we designed corresponding experimental paradigms and proposed a multi-band task related components matching (MTRCM) method to improve the rapid cognitive decoding of both small and similar objects. We compared the areas under the receiver operating characteristic curve (AUC) between MTRCM and other 9 methods under different numbers of training sample using RSVP-ERP data from 50 subjects. The results showed that MTRCM maintained an overall superiority and achieved the highest average AUC (0.6562 ± 0.0091). We also optimized the frequency band and the time parameters of the method. The verification on public data sets further showed the necessity of designing MTRCM method. The MTRCM method provides a new approach for neural decoding of both small and similar RSVP objects, which is conducive to promote the further development of RSVP-BCI.


Assuntos
Interfaces Cérebro-Computador , Cognição , Eletroencefalografia , Potenciais Evocados , Humanos , Eletroencefalografia/métodos , Cognição/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Potenciais Evocados/fisiologia , Estimulação Luminosa/métodos , Encéfalo/fisiologia
14.
Toxicology ; 502: 153727, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38216111

RESUMO

Manganese is an essential trace element, but overexposure can cause neurotoxicity and subsequent neurodegenerative diseases. Ferroptosis is a form of cell death characterized by lipid peroxidation and iron overload inside cells, which is closely related to manganese neurotoxicity. Manganese can induce ferroptosis through multiple pathways: causing oxidative stress and increased cellular reactive oxygen species (ROS), resulting in lipid peroxidation; depleting glutathione (GSH) and weakening the antioxidant capacity of cells; disrupting iron metabolism and increasing iron-dependent lipid peroxidation; damaging mitochondrial function and disrupting the electron transport chain, leading to increased ROS production. Oxidative stress, iron metabolism disorders, lipid peroxidation, GSH depletion, and mitochondrial dysfunction, typical features of ferroptosis, have been observed in animal and cell models after manganese exposure. In summary, manganese can participate in the pathogenesis of neurodegenerative diseases by inducing events related to ferroptosis. This provides new insights into studying the mechanism of manganese neurotoxicity and developing therapeutic drugs.


Assuntos
Ferroptose , Doenças Neurodegenerativas , Animais , Espécies Reativas de Oxigênio/metabolismo , Manganês/toxicidade , Estudos Retrospectivos , Ferro/toxicidade , Ferro/metabolismo , Peroxidação de Lipídeos , Glutationa/metabolismo , Doenças Neurodegenerativas/induzido quimicamente
15.
Adv Mater ; : e2404264, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830198

RESUMO

After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.

16.
Cell Cycle ; 23(3): 262-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38597826

RESUMO

Esophageal cancer (EC) is a common and serious form of cancer, and while DNA methyltransferase-1 (DNMT1) promotes DNA methylation and carcinogenesis, the role of F-box protein 32 (FBXO32) in EC and its regulation by DNMT1-mediated methylation is still unclear. FBXO32 expression was examined in EC cells with high DNMT1 expression using GSE163735 dataset. RT-qPCR assessed FBXO32 expression in normal and EC cells, and impact of higher FBXO32 expression on cell proliferation, migration, and invasion was evaluated, along with EMT-related proteins. The xenograft model established by injecting EC cells transfected with FBXO32 was used to evaluate tumor growth, apoptosis, and tumor cells proliferation and metastasis. Chromatin immunoprecipitation (ChIP) assay was employed to study the interaction between DNMT1 and FBXO32. HitPredict, co-immunoprecipitation (Co-IP), and Glutathione-S-transferase (GST) pulldown assay analyzed the interaction between FBXO32 and cyclin dependent kinase 9 (CDK9). Finally, the ubiquitination assay identified CDK9 ubiquitination, and its half-life was measured using cycloheximide and confirmed through western blotting. DNMT1 negatively correlated with FBXO32 expression in esophageal cells. High FBXO32 expression was associated with better overall survival in patients. Knockdown of DNMT1 in EC cells increased FBXO32 expression and suppressed malignant phenotypes. FBXO32 repressed EC tumor growth and metastasis in mice. Enrichment of DNMT1 in FBXO32 promoter region led to increased DNA methylation and reduced transcription. Mechanistically, FBXO32 degraded CDK9 through promoting its ubiquitination.


Assuntos
Proliferação de Células , DNA (Citosina-5-)-Metiltransferase 1 , Epigênese Genética , Neoplasias Esofágicas , Proteínas F-Box , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/metabolismo , Humanos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Animais , Proliferação de Células/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Linhagem Celular Tumoral , Epigênese Genética/genética , Camundongos , Metilação de DNA/genética , Ubiquitinação , Movimento Celular/genética , Apoptose/genética , Camundongos Endogâmicos BALB C , Sobrevivência Celular/genética , Feminino , Masculino
17.
Cancer Med ; 13(14): e70023, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001679

RESUMO

BACKGROUND: Meta-analyses have primarily focused on the effects of exercise-based prehabilitation on postoperative outcomes and ignored the role of nutritional intervention. In this study, we filled this gap by investigating the effect of nutrition-based prehabilitation on the postoperative outcomes of patients who underwent esophagectomy and gastrectomy. METHODS: Five electronic databases, namely, PubMed, the Web of Science, Embase, Cochrane Library, and CINAHL, were searched. Adults diagnosed with esophagogastric cancer who were scheduled to undergo surgery and had undergone uni- or multimodal prehabilitation, with at least a week of mandatory nutritional intervention, were included. Forest plots were used to extract and visualize the data from the included studies. The occurrence of any postoperative complication was considered the primary endpoint. RESULTS: Eight studies met the eligibility criteria, with five randomized controlled trials (RCTs) and three cohort studies. In total, 661 patients were included. Any prehabilitation, that is, unimodal (only nutrition) and multimodal prehabilitation, collectively decreased the risk of any postoperative complication by 23% (95% confidence interval [CI] = 0.66-0.90). A similar effect was exclusively observed for multimodal prehabilitation (risk ratio [RR] = 0.78, 95% CI = 0.66-0.93); however, it was not significant for unimodal prehabilitation. Any prehabilitation significantly decreased the length of hospital stay (LOS) (weighted mean difference = -0.77, 95% CI = -1.46 to -0.09). CONCLUSIONS: Nutrition-based prehabilitation, particularly multimodal prehabilitation, confers protective effects against postoperative complications after esophagectomy and gastrectomy. Our findings suggest that prehabilitation slightly decreases LOS; however, the finding is not clinically significant. Therefore, additional rigorous RCTs are warranted for further substantiation.


Assuntos
Neoplasias Esofágicas , Esofagectomia , Gastrectomia , Complicações Pós-Operatórias , Exercício Pré-Operatório , Neoplasias Gástricas , Humanos , Neoplasias Esofágicas/cirurgia , Neoplasias Gástricas/cirurgia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/epidemiologia , Esofagectomia/efeitos adversos , Esofagectomia/reabilitação , Gastrectomia/efeitos adversos , Resultado do Tratamento , Tempo de Internação , Cuidados Pré-Operatórios/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estado Nutricional
18.
Nutrients ; 16(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931162

RESUMO

BACKGROUND: The metabolic-status-related mechanisms underlying the deterioration of the lung function in obese asthma have not been completely elucidated. OBJECTIVE: This study aimed to investigate the basal metabolic rate (BMR) in patients with obese asthma, its association with the lung function, and its mediating role in the impact of obesity on the lung function. METHODS: A 12-month prospective cohort study (n = 598) was conducted in a real-world setting, comparing clinical, body composition, BMR, and lung function data between patients with obese (n = 282) and non-obese (n = 316) asthma. Path model mediation analyses for the BMR and skeletal muscle mass (SMM) were conducted. We also explored the effects of the BMR on the long-term lung function in patients with asthma. RESULTS: Patients with obese asthma exhibited greater airway obstruction, with lower FEV1 (1.99 vs. 2.29 L), FVC (3.02 vs. 3.33 L), and FEV1/FVC (65.5 vs. 68.2%) values compared to patients with non-obese asthma. The patients with obese asthma also had higher BMRs (1284.27 vs. 1210.08 kcal/d) and SMM (23.53 vs. 22.10 kg). Both the BMR and SMM mediated the relationship between obesity and the lung function spirometers (FEV1, %FEV1, FVC, %FVC, and FEV1/FVC). A higher BMR or SMM was associated with better long-term lung function. CONCLUSIONS: Our study highlights the significance of the BMR and SMM in mediating the relationship between obesity and spirometry in patients with asthma, and in determining the long-term lung function. Interventions for obese asthma should focus not only on reducing adiposity but also on maintaining a high BMR.


Assuntos
Asma , Metabolismo Basal , Pulmão , Músculo Esquelético , Obesidade , Humanos , Asma/fisiopatologia , Asma/complicações , Obesidade/complicações , Obesidade/fisiopatologia , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Pulmão/fisiopatologia , Adulto , Músculo Esquelético/fisiopatologia , Músculo Esquelético/metabolismo , Testes de Função Respiratória , Composição Corporal , Estudos de Coortes
19.
J Neural Eng ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39029493

RESUMO

OBJECTIVE: While Brain-Computer Interface (BCI) based on Rapid Serial Visual Presentation (RSVP) is widely used in target detection, patterns of Event-Related Potential (ERP), as well as the performance on detecting inconspicuous targets remain unknown. Moreover, participant-screening methods to excluded 'BCI-blind' users are still lacking. APPROACH: A RSVP paradigm was designed with targets of varied concealment, size, and location. ERPs (e.g. P300 and N2pc) and target detection accuracy were compared among these conditions. The relationship between participants' attention scores and target detection accuracy was also analyzed to test attention level as a criterion for participant screening. MAIN RESULTS: Statistical analysis showed conditions of target concealment and size had significant influences on ERP. In particular, ERP for inconspicuous targets, such as concealed and small targets, had lower amplitude and longer latency. In consistent, the accuracy of detection in inconspicuous condition was significantly lower than that of conspicuous condition. In addition, a significant association was found between attention scores and target detection accuracy for camouflaged targets. SIGNIFICANCE: The study was the first to address ERP features among multiple dimensions of concealment, size, and location. The conclusion provided insights into the relationship between ERP decoding and properties of targets. In addition, the association between attention scores and detection accuracy implied a promising method in screening well-behaved participants for camouflaged target detection.

20.
Front Hum Neurosci ; 18: 1385360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756843

RESUMO

Introduction: Accurate classification of single-trial electroencephalogram (EEG) is crucial for EEG-based target image recognition in rapid serial visual presentation (RSVP) tasks. P300 is an important component of a single-trial EEG for RSVP tasks. However, single-trial EEG are usually characterized by low signal-to-noise ratio and limited sample sizes. Methods: Given these challenges, it is necessary to optimize existing convolutional neural networks (CNNs) to improve the performance of P300 classification. The proposed CNN model called PSAEEGNet, integrates standard convolutional layers, pyramid squeeze attention (PSA) modules, and deep convolutional layers. This approach arises the extraction of temporal and spatial features of the P300 to a finer granularity level. Results: Compared with several existing single-trial EEG classification methods for RSVP tasks, the proposed model shows significantly improved performance. The mean true positive rate for PSAEEGNet is 0.7949, and the mean area under the receiver operating characteristic curve (AUC) is 0.9341 (p < 0.05). Discussion: These results suggest that the proposed model effectively extracts features from both temporal and spatial dimensions of P300, leading to a more accurate classification of single-trial EEG during RSVP tasks. Therefore, this model has the potential to significantly enhance the performance of target recognition systems based on EEG, contributing to the advancement and practical implementation of target recognition in this field.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa