RESUMO
BACKGROUND AND AIMS: Epigenetic reprogramming and escape from terminal differentiation are poorly understood enabling characteristics of liver cancer. Keratin 19 (KRT19), classically known to form the intermediate filament cytoskeleton, is a marker of stemness and worse prognosis in liver cancer. This study aimed to address the functional roles of KRT19 in liver tumorigenesis and to elucidate the underlying mechanisms. APPROACH AND RESULTS: Using multiplexed genome editing of hepatocytes in vivo, we demonstrated that KRT19 promoted liver tumorigenesis in mice. Cell fractionation revealed a previously unrecognized nuclear fraction of KRT19. Tandem affinity purification identified histone deacetylase 1 and REST corepressor 1, components of the corepressor of RE-1 silencing transcription factor (CoREST) complex as KRT19-interacting proteins. KRT19 knockout markedly enhanced histone acetylation levels. Mechanistically, KRT19 promotes CoREST complex formation by enhancing histone deacetylase 1 and REST corepressor 1 interaction, thus increasing the deacetylase activity. ChIP-seq revealed hepatocyte-specific genes, such as hepatocyte nuclear factor 4 alpha ( HNF4A ), as direct targets of KRT19-CoREST. In addition, we identified forkhead box P4 as a direct activator of aberrant KRT19 expression in liver cancer. Furthermore, treatment of primary liver tumors and patient-derived xenografts in mice suggest that KRT19 expression has the potential to predict response to histone deacetylase 1 inhibitors especially in combination with lenvatinib. CONCLUSIONS: Our data show that nuclear KRT19 acts as a transcriptional corepressor through promoting the deacetylase activity of the CoREST complex, resulting in dedifferentiation of liver cancer. These findings reveal a previously unrecognized function of KRT19 in directly shaping the epigenetic landscape in cancer.
RESUMO
Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA damage sensor and contributes to both DNA repair and cell death processes. However, how PARP-1 signaling is regulated to switch its function from DNA repair to cell death remains largely unknown. Here, we found that PARP-1 plays a central role in alkylating agent-induced PARthanatic cancer cell death. Lysine demethylase 6B (KDM6B) was identified as a key regulator of PARthanatos. Loss of KDM6B protein or its demethylase activity conferred cancer cell resistance to PARthanatic cell death in response to alkylating agents. Mechanistically, KDM6B knockout suppressed methylation at the promoter of O6-methylguanine-DNA methyltransferase (MGMT) to enhance MGMT expression and its direct DNA repair function, thereby inhibiting DNA damage-evoked PARP-1 hyperactivation and subsequent cell death. Moreover, KDM6B knockout triggered sustained Chk1 phosphorylation and activated a second XRCC1-dependent repair machinery to fix DNA damage evading from MGMT repair. Inhibition of MGMT or checkpoint response re-sensitized KDM6B deficient cells to PARthanatos induced by alkylating agents. These findings provide new molecular insights into epigenetic regulation of PARP-1 signaling mediating DNA repair or cell death and identify KDM6B as a biomarker for prediction of cancer cell vulnerability to alkylating agent treatment.
Assuntos
Dacarbazina , Parthanatos , Alquilantes , DNA , Reparo do DNA , Dacarbazina/farmacologia , Epigênese Genética , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Temozolomida/farmacologiaRESUMO
Increasing evidence has supported the crucial role of CARD14 in the pathogenesis of psoriasis, whereas the precise cellular signaling involved in skin physiopathology remains poorly understood. In this article, we show that neither genetic ablation of Il17a nor elimination of T cells was sufficient to restrain the skin inflammation in a CARD14-E138A-mutation-induced psoriasis-like mouse model, whereas depletion of Il23, which extremely blocked the IL-23/T17 axis, was more effective. Targeting CBM complex by conditional deletion of MALT1 or BCL10 in keratinocytes abrogated both the cutaneous and systemic inflammation of heterozygous Card14 E138A/+ mice. Selective inactivation of keratinocyte-specific MALT1 proteolytic activity strongly ameliorated the Card14 E138A/+- and Card14 ΔQ136/+-induced skin disease, which was reproduced by using the imiquimod-induced mouse model. Together, our results suggest a sequence of events under CARD14-mutation-induced psoriasis condition that keratinocyte-intrinsic activation of CBM complex initiates the skin inflammation depending on the IL-23/T17 axis. Targeting keratinocytes by inactivation of MALT1 paracaspase activity might be a promising therapeutic target for early psoriasis treatment.
Assuntos
Interleucina-23/imunologia , Queratinócitos/imunologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/imunologia , Psoríase/imunologia , Pele/imunologia , Células Th17/imunologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-23/genética , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Psoríase/genética , Psoríase/patologia , Pele/patologia , Células Th17/patologiaRESUMO
Background: Tumor progression and the therapeutic resistance associated with cancer agents are thought to be modulated by circular RNAs (circRNAs); however, its mechanism associated with nonsmall cell lung cancer (NSCLC) is still undetermined. The following investigation aimed to evaluate the involvement of circRNAs with NSCLC. Methods: The serum specimens of 146 NSCLC individuals who received complete four cycles of PTX chemotherapy were collected. The serum concentration of hsa_circ_0005962 of these individuals was assessed with quantitative real-time polymerase chain reaction (qRT-PCR), followed by the evaluation of demographic and survival consequences for further assessments. Results: It was revealed that hsa_circ_0005962 is substantially increased in NSCLC chemoresistant patients and was positively correlated with the disease stage. Furthermore, the hsa_circ_0005962 value of the area under the curve was moderate, and increased hsa_circ_0005962 expression was linked with shorter overall survival (OS). Hsa_circ_0005962 stimulated paclitaxel resistance (PTX-R) in resistant NSCLC cells by regulating the axis of miR-126-5p/insulin-like growth factor 1 (IGF1). Conclusion: The results of this investigation highlight that hsa_circ_0005962 induces chemoresistance in NSCLC patients and, therefore, can act as a physiological target to treat NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA Circular/genética , RNA Circular/metabolismo , Paclitaxel/uso terapêutico , Prognóstico , BiomarcadoresRESUMO
OBJECTIVES: The aim of this study was to investigate the relationship between matrix metalloproteinase-7 (MMP-7) expression and the clinical and pathological characteristics of salivary adenoid cystic carcinomas (SACC) of the palatal minor salivary gland. METHODS: In this study, 58 samples of SACC and 10 samples of normal salivary gland tissue were examined. Immunohistochemistry was used to detect MMP-7 and vascular endothelial growth factor A (VEGF-A) expression in SACC and normal tissues. The clinical and pathological characteristics of the patients with SACC were collected. RESULTS: Of the 58 SACC samples, 44 were positive for MMP-7, and the expression rate was 75.9%. No expression was detected in the 10 normal salivary gland tissues. The level of MMP-7 expression in the SACC and normal samples was significantly different. The level of expression of MMP-7 in the SACC samples did not correlate with age, sex or pathological type but did correlate with pathological grade, nerve infiltration and clinical stage. There was a positive correlation between VEGF-A and MMP-7 expression. CONCLUSIONS: The SACC samples showed high expression of MMP-7, which was associated with tumour differentiation, invasiveness and clinical stage. The detection of MMP-7 positively correlated with the detection of VEGF-A in SACC.
Assuntos
Carcinoma Adenoide Cístico , Metaloproteinase 7 da Matriz , Neoplasias das Glândulas Salivares , Humanos , Carcinoma Adenoide Cístico/patologia , Linhagem Celular Tumoral , Metaloproteinase 7 da Matriz/metabolismo , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares Menores/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
OBJECTIVE: To explore the VEGF-A expression in salivary gland adenoid cystic carcinoma tissues and detect the relationship between the mechanism of occurrence, development and metastasis of jaws with salivary gland adenoid cystic carcinoma and VEGF-A expression. METHODS: Paraffin samples from 58 cases of SACC of the palate and ten cases of normal salivary gland tissues were collected. The expression levels of VEGF-A protein were detected using the immunohistochemistry EnVision system. RESULTS: Among the 58 cases, there were 20 cases of the cribriform type, 17 cases of the tubular type, and 21 cases of the solid type. There were 9 cases with lymph node metastasis and 21 cases without lymph node metastasis. And there were 8 cases of T1, 15 cases of T2, and 7 cases of T3/T4. The positive expression rate of VEGF-A in SACC of the palate was 74.1%, which was higher than that found in normal salivary gland tissues (10%). The VEGF-A was localized in the cytoplasm/cell membrane. CONCLUSION: VEGF-A is highly expressed in SACC of the palate. The level of expression is closely related to the pathological grade, lymph node metastasis, and clinical stage of the tumor, and it can thus be used as an important indicator for judging the biological behavior of SACC of the palate.
Assuntos
Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Fator A de Crescimento do Endotélio Vascular , Humanos , Carcinoma Adenoide Cístico/patologia , Metástase Linfática/patologia , Palato/patologia , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/patologia , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
The Hippo pathway plays important roles in organ development, tissue regeneration, and human diseases, such as cancer. In the canonical Hippo pathway, the MST1/2-LATS1/2 kinase cascade phosphorylates and inhibits transcription coactivators Yes-associated protein and transcription coactivator with PDZ-binding motif and thus regulates transcription of genes important for cell proliferation and apoptosis. However, recent studies have depicted a much more complicate picture of the Hippo pathway with many new components and regulatory stimuli involving both chemical and mechanical signals. Furthermore, accumulating evidence indicates that the Hippo pathway also plays important roles in the determination of cell fates, such as self-renewal and differentiation. Here, we review regulations of the Hippo pathway and its functions in stemness and differentiation emphasizing recent discoveries.
Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/enzimologia , Animais , Fator de Crescimento de Hepatócito/metabolismo , Via de Sinalização Hippo , Humanos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinase 3 , Células-Tronco/citologia , Proteínas Supressoras de Tumor/metabolismoRESUMO
The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX) and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the ß-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC) or activating mutations of ß-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases.
Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Gliotoxina/farmacologia , Neosartorya/metabolismo , Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação para Baixo/efeitos dos fármacos , Genes Reporter/genética , Gliotoxina/isolamento & purificação , Células HCT116 , Humanos , Luciferases/genética , Metabolismo Secundário , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/genéticaRESUMO
GB virus type C (GBV-C) is a single-stranded positive-sense RNA virus classified in the Flaviviridae family. Persistent coinfection with GBV-C is associated with lower human immunodeficiency virus type 1 (HIV-1) load, higher CD4(+) T-cell count, and prolonged survival in HIV-1 coinfected patients. The GBV-C envelope glycoprotein E2 has been reported to interfere with HIV-1 entry. In this study, we showed that the expression of GBV-C E2 inhibited HIV-1 Gag assembly and release. Expression of glycosylated GBV-C E2 inhibited HIV-1 Gag precursor processing, resulting in lower production of CAp24 and MAp17, while the overall expression level of the Gag precursor Pr55 remained unchanged. Membrane floatation gradient and indirect immunofluorescence confocal microscopy analysis showed that glycosylated E2 disrupted HIV-1 Gag trafficking to the plasma membrane, resulting in Gag accumulation in subcellular compartments. This interference in HIV-1 Gag trafficking led to diminished HIV-1 particle production, which is a critical step for HIV-1 to infect new host cells. These findings shed light on a novel mechanism used by GBV-C E2 to inhibit HIV-1 replication and may provide insight into new approaches for suppressing HIV-1 replication.
Assuntos
Membrana Celular/metabolismo , Vírus GB C/metabolismo , HIV-1/metabolismo , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Contagem de Linfócito CD4 , Membrana Celular/virologia , Coinfecção/virologia , Vírus GB C/genética , Glicosilação , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Células HeLa , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Transfecção , Proteínas do Envelope Viral/genética , Carga Viral , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genéticaRESUMO
Calcific myonecrosis (CM), a rare post-traumatic sequel of the lower limb, is characterized by calcified lesions. A diagnosis of CM can be difficult owing to the longtime span from the emergence of the original trauma to the onset of the symptoms of CM. This case report aimed to feature a case of a 55-year-old gentleman who presented with a progressive painful swelling in the anterolateral aspect of the right lower leg with the initial trauma arising 11 years ago. In the conservative treatment, a fluid-filled mass was formed. The histological examination of the biopsy suggested a diagnosis of CM. The patient underwent a complete debridement operation, after which vacuum sealing drainage was used to manage the space left. Three weeks later, direct wound closure was achieved. Five-year follow-ups showed an excellent outcome without recurrence. Complete surgical debridement combined with primary closure is recommended to manage CM. Cite this article as: Wang C, Hao D, Wang S. Management of calcific myonecrosis using vacuum sealing drainage: A rare case report and 5-year follow-up. Acta Orthop Traumatol Turc., 2024;58(2):135-139.
Assuntos
Calcinose , Desbridamento , Drenagem , Necrose , Humanos , Masculino , Pessoa de Meia-Idade , Desbridamento/métodos , Necrose/cirurgia , Calcinose/cirurgia , Drenagem/métodos , Tratamento de Ferimentos com Pressão Negativa/métodos , Seguimentos , Músculo Esquelético/cirurgia , Doenças Musculares/cirurgia , Doenças Musculares/etiologia , Doenças Musculares/diagnósticoRESUMO
MAT2B works together with MAT2A to synthesize S-Adenosyl methionine (SAM) as the primary methyl donor. MAT2B, despite lacking catalytic activity, exerts regulatory control over the enzymatic activity of MAT2A. In addition to the enzymatic activity regulation, we find that, in an NADP+-dependent manner, MAT2B binds and stabilizes MAT2A. Disruption of the cellular NADP+ remodels the protein level of MAT2A. The pentose phosphatase pathway regulates the level of MAT2A protein through the interaction of NADP+ with MAT2B. Additionally, MAT2B-MAT2A interaction regulates the mRNA m6A modification and stability. In liver tumors, the Mat2a mRNA level is elevated but the protein level is decreased by the restricted NADP+. Blocking the interaction between MAT2B and MAT2A by the keto diet can suppress liver tumor growth. These findings reveal that MAT2B is essential for regulating the protein levels of MAT2A and connecting SAM synthesis to mRNA m6A.
Assuntos
Adenosina , Neoplasias Hepáticas , Metionina Adenosiltransferase , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/genética , Humanos , Adenosina/metabolismo , Adenosina/análogos & derivados , Animais , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , NADP/metabolismo , Camundongos , S-Adenosilmetionina/metabolismo , Linhagem Celular Tumoral , Ligação ProteicaRESUMO
RNF214 is an understudied ubiquitin ligase with little knowledge of its biological functions or protein substrates. Here we show that the TEAD transcription factors in the Hippo pathway are substrates of RNF214. RNF214 induces non-proteolytic ubiquitylation at a conserved lysine residue of TEADs, enhances interactions between TEADs and YAP, and promotes transactivation of the downstream genes of the Hippo signaling. Moreover, YAP and TAZ could bind polyubiquitin chains, implying the underlying mechanisms by which RNF214 regulates the Hippo pathway. Furthermore, RNF214 is overexpressed in hepatocellular carcinoma (HCC) and inversely correlates with differentiation status and patient survival. Consistently, RNF214 promotes tumor cell proliferation, migration, and invasion, and HCC tumorigenesis in mice. Collectively, our data reveal RNF214 as a critical component in the Hippo pathway by forming a signaling axis of RNF214-TEAD-YAP and suggest that RNF214 is an oncogene of HCC and could be a potential drug target of HCC therapy.
Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Proteínas de Ligação a DNA , Neoplasias Hepáticas , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Ubiquitinação , Proteínas de Sinalização YAP , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Humanos , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Sinalização YAP/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Progressão da Doença , Camundongos Nus , Movimento Celular/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Células HEK293 , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Feminino , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genéticaRESUMO
Background: Circular RNAs (circRNAs) demonstrated critical roles within developing tumors and treatment resistance in an increasing body of research. The aim was to look into the functions and processes of hsa_circ_0003489 in the non-small cell lung cancer (NSCLC) paclitaxel (PTX) resistance. Methods: NSCLC cell-based cultures including A549 and H460 were employed for such an investigation. hsa_circ_0003489, miR-98-5p, and insulin-like growth factor 2 (IGF2) expression-profiles were evaluated with a quantitative real-time polymerase chain reaction (RT-qPCR). The PTX resistance was determined using MTT assay, and the ELISA test measured IGF2 expression. Facilitating corroboration for miR-98-5p relation and hsa_circ_0003489 or IGF2, a dual-luciferase reporter method was applied. Results: The hsa_circ_0003489 level was raised in cells and tissues from PTX-resistant (PR) NSCLC. In PR NSCLC cells, hsa_circ_0003489 knockdown reduced PTX resistance. For the purpose of the mechanism study, hsa_circ_0003489 knockdown substantially reduced IGF2 expression via miR-98-5p sponging, improving PTX sensitivity in PR NSCLC. Conclusion: Through miR-98-5p/IGF2 axis control, hsa_circ_0003489 knockdown helped NSCLC overcome PTX resistance, suggesting a potential circRNA-targeted therapy for the disease.
RESUMO
Circular RNAs (circRNAs) have been shown to have critical roles in developing cancer and treatment resistance in an increasing body of research. The aim was to look into the functions and processes of hsa_circ_0003220 in the non-small cell lung cancer (NSCLC) chemoresistance. The NSCLC cell lines H460 and A549 were employed in present work. hsa_circ_0003220, miR-489-3p, and insulin-like growth factors (IGF1) mRNA levels were assessed with a quantitative real time polymerase chain reaction (qRT-PCR). The cisplatin, docetaxel, and paclitaxel (PTX) resistances were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the enzyme linked immunosorbent assay (ELISA) test measured IGF1 expression. In order to corroborate the miR-489-3p relation with hsa_circ_0003220 or IGF1, a dual-luciferase reporter method was applied. The level of hsa_circ_0003220 was raised in cells and tissues from PTX-resistant (PR) NSCLC. In PR NSCLC cells, hsa_circ_0003220 knockdown reduced chemoresistance. For the purpose of the mechanism study, hsa_circ_0003220 knockdown substantially reduced IGF1 expression via miR-489-3p sponging, reducing chemoresistance in PR NSCLC cells. By controlling the miR-489-3p/IGF1 axis, hsa_circ_0003220 knockdown helped NSCLC overcome chemoresistance, suggesting a potential circRNA-targeted therapy for the disease.
RESUMO
High-precision and safety control in face of disturbances and uncertainties is a challenging issue of both theoretical and practical importance. In this article, new adaptive anti-disturbance control schemes are proposed for a class of uncertain nonlinear systems with composite disturbances, including additive disturbances, multiplicative actuator faults, and implicit disturbances deeply coupled with system states. Both the cases with known and unknown control/fault directions are investigated. By properly fusing the techniques of disturbance observers and adaptive compensation, it is shown that all closed-loop signals are globally uniformly bounded and the tracking error converges to zero asymptotically, no matter the control/fault directions are known or not. In the case of known directions, the proposed control scheme, for the first time, guarantees asymptotic tracking and L ∞ tracking performance simultaneously in face of disturbances and actuator faults. Moreover, novel Nussbaum functions and a contradiction argument are introduced, which allow the system to have multiple unknown nonidentical control directions and unknown time-varying fault direction. Simulation results illustrate the effectiveness of the proposed control schemes.
RESUMO
CARD14-associated papulosquamous eruption is an autosomal dominant genodermatosis characterized by early-onset, generalized erythematous patches and plaques with prominent scales, mostly with facial involvement. Heterozygous gain-of-function variants in the CARD14 gene have been reported to be causative for this entity. The pathogenesis mainly involves the IL-23âIL-17 inflammatory circuit, yet the efficacy of antiâIL-17 treatment remained less examined. In this study, we report one previously unidentified variant underlying the CARD14-associated papulosquamous eruption and showed its gain-of-function property. Furthermore, we present the beneficial effect of antiâIL-17A treatment in our patient.
RESUMO
In this article, a novel composite hierarchical antidisturbance control (CHADC) algorithm aided by the information-theoretic learning (ITL) technique is developed for non-Gaussian stochastic systems subject to dynamic disturbances. The whole control process consists of some time-domain intervals called batches. Within each batch, a CHADC scheme is applied to the system, where a disturbance observer (DO) is employed to estimate the dynamic disturbance and a composite control strategy integrating feedforward compensation and feedback control is adopted. The information-theoretic measure (entropy or information potential) is employed to quantify the randomness of the controlled system, based on which the gain matrices of DO and feedback controller are updated between two adjacent batches. In this way, the mean-square stability is guaranteed within each batch, and the system performance is improved along with the progress of batches. The proposed algorithm has enhanced disturbance rejection ability and good applicability to non-Gaussian noise environment, which contributes to extending CHADC theory to the general stochastic case. Finally, simulation examples are included to verify the effectiveness of theoretical results.
RESUMO
In this article, under directed graphs, an adaptive consensus tracking control scheme is proposed for a class of nonlinear multiagent systems with completely unknown control coefficients. Unlike the existing results, here, each agent is allowed to have multiple unknown nonidentical control directions, and continuous communication between neighboring agents is not needed. For each agent, we design a group of novel Nussbaum functions and construct a monotonously increasing sequence in which the effects of our Nussbaum functions reinforce rather than counteract each other. With these efforts, the obstacle caused by the unknown control directions is successfully circumvented. Moreover, an event-triggering mechanism is introduced to determine the time instants for communication, which considerably reduces the communication burden. It is shown that all closed-loop signals are globally uniformly bounded and the tracking errors can converge to an arbitrarily small residual set. Simulation results illustrate the effectiveness of the proposed scheme.
RESUMO
The crude polysaccharide (CPNP) ofCodonopsis pilosulawas obtained by hot-water extraction technology. The extraction kinetic model established according to Fick's first law of diffusion and related parameters of polysaccharide was studied. CPNP microcapsules were prepared by blending with sodium alginate, Ca2+ions and crude CPNP. The quality control (drug loading rate, embedding rate and release rate, etc) of CPNP microcapsules were analyzed by pharmacopeas standards. The structure feature of CPNP microcapsules also were determined with various methods. The wound healing ability of CPNP microcapsules loading with different concentration of CPNP was evaluated using the rat wound model. The activity of various enzymes and the expression levels of pro-inflammatory factors in the model skin tissue also were determined by enzyme linked immunosorbent assay (ELISA). Hematoxylin-eosin staining (HE), Masson, immunohistochemistry were used to investigate the external application effect of CPNP microcapsules on skin wound repair. The extraction kinetics of CPNP was established with the linear correlation coefficient (R2) of 0.83-0.93, implied that the extraction process was fitted well with the Fick's first law of diffusion. The CPNP has good compatibility with sodium alginate and Ca2+ions by SEM and TEM observation, and the particle size of CPNP microcapsules was 21.25 ± 2.84 µm with the good degradation rate, loading rate (61.59%) and encapsulation rate (55.99%), maximum swelling rate (397.380 ± 25.321%). Compared with control group, the redness, and swelling, bleeding, infection, and exudate of the damaged skin decreased significantly after CPNP microcapsules treatment, and the CPNP microcapsules groups exhibited good wound healing function with less inflammatory cell infiltration. The pathological structure showed that in the CPNP microcapsules group, more newborn capillaries, complete skin structure, and relatively tight and orderly arrangement of collagen fibers were observed in the skin of rats. CPNP microcapsules could effectively inhibit the high expression of pro-inflammatory factors in damaged skin, and significantly increase the contents of related enzymes (GSH-Px, T-AOC, LPO) and collagen fibers. The relative expression levels of genes (VEGF and miRNA21) in the CPNP microcapsules group were higher than those in the model group and the negative group. The above results suggested that the CPNP microcapsules could controlled-release the CPNP to the wound surface, and then played a better role in antibacterial, anti-inflammatory and skin wound repair.
Assuntos
MicroRNAs , Cicatrização , Animais , Cápsulas , Cinética , Polissacarídeos , Ratos , PeleRESUMO
In this study, the second-order model, Fick's second law of diffusion, and the Peleg model were used to evaluate the extraction kinetic model of polysaccharide (CPP) from Codonopsis pilosula. The characteristic functional groups, surface structure, and physical and chemical properties of CPP were analyzed by multi-spectroscopic and microscopic techniques. The results showed that the extraction process agreed well with the second-order model, Fick's second diffusion law, and Peleg model. Rheological tests showed that CPP exhibited different viscosity changes under different conditions (Solution viscosity was inversely proportional to temperature, time, etc.; proportional to polysaccharide concentration, Na+ content, etc.). CPP was composed of molecular aggregates composed of small particles, with more pore structure and basically completely decomposed at 130 °C. The hypoglycemic study showed that CPP had a strong inhibitory effect on α-glycosidase than α-amylase. The morphology and subsequent structural features, anti-diabetic potential, and rheological properties of CPP were revealed to provide a theoretical basis for the development of pharmaceutical preparations or health food and functional food for the treatment of diabetes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13399-022-02518-w.