Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202400549, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38595043

RESUMO

The stability of platinum-based alloy catalysts is crucial for the future development of proton exchange membrane fuel cells, considering the potential dissolution of transition metals under complex operating conditions. Here, we report on a Rh-doped Pt3Co alloy that exhibits strong interatomic interactions, thereby enhancing the durability of fuel cells. The Rh-Pt3Co/C catalyst demonstrates exceptional catalytic activity for oxygen reduction reactions (ORR) (1.31 A mgPt -1 at 0.9 V vs. the reversible hydrogen electrode (RHE) and maintaining 92 % of its mass activity after 170,000 potential cycles). Long-term testing has shown direct inhibition of Co dissolution in Rh-Pt3Co/C. Furthermore, tests on proton exchange membrane fuel cells (PEMFC) have shown excellent performance and long-term durability with low Pt loading. After 50,000 cycles, there was no voltage loss at 0.8 A cm-2 for Rh-Pt3Co/C, while Pt3Co/C experienced a loss of 200 mV. Theoretical calculations suggest that introducing transition metal atoms through doping creates a stronger compressive strain, which in turn leads to increased catalytic activity. Additionally, Rh doping increases the energy barrier for Co diffusion in the bulk phase, while also raising the vacancy formation energy of the surface Pt. This ensures the long-term stability of the alloy over the course of the cycle.

2.
Langmuir ; 38(18): 5934-5942, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35476417

RESUMO

MoS2 was vertically grown on g-C3N4 nanosheets by chemical vapor deposition to prepare nanocomposites named MS-CN samples. Because of a large-surface area of 545.2 m2·g-1 and a total pore volume of 1.7 cm3·g-1, the sample MS-CN revealed fast and large adsorption capacity for tetracycline hydrochloride (TCH). The adsorption kinetics model proved that TCH could be rapidly adsorbed within 5 min, and chemical adsorption was dominant. For single-component adsorption of TCH, the maximum adsorption capacity was ∼154 mg/g. The monolayer adsorption was carried out on the surface of MS-CN. Both of the film and intra-particle diffusion were considered as significant processes to facilitate adsorption. Thermodynamic parameters indicate that the adsorption of TCH is a spontaneous endothermic process. The adsorption of TCH was highly pH-dependent. The maximum adsorption capacity of TCH was obtained in the case of pH ∼ 7. After four adsorption and desorption cycles, MS-CN still maintained well-adsorption performance. Multiple adsorption mechanism, pore filling, electrostatic force, π-π conjugation, and hydrogen bonding interactions were studied. Because of fast adsorption, large adsorption capacity, and high stability, it is a promising adsorbent for antibiotics.


Assuntos
Tetraciclina , Poluentes Químicos da Água , Adsorção , Antibacterianos , Cinética , Molibdênio , Poluentes Químicos da Água/análise
3.
Mediators Inflamm ; 2022: 2396487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795405

RESUMO

Background: Enriched environment (EE) can protect the brain against damages caused by an ischemic stroke; however, the underlying mechanism remains elusive. Autophagy and mitochondria quality control are instrumental in the pathogenesis of ischemic stroke. In this study, we investigated whether and how autophagy and mitochondria quality control contribute to the protective effect of EE in the acute phase of cerebral ischemia-reperfusion injury. Methods: We exposed transient middle cerebral artery occlusion (tMCAO) mice to EE or standard condition (SC) for 7 days and then studied them for neurological deficits, autophagy and inflammation-related proteins, and mitochondrial morphology and function. Results: Compared to tMCAO mice in the SC group, those in the EE group showed fewer neurological deficits, relatively downregulated inflammation, higher LC3 expression, higher mitochondrial Parkin levels, higher mitochondrial fission factor dynamin-related protein-1 (Drp1) levels, lower p62 expression, and lower autophagy inhibitor mTOR expression. Furthermore, we found that the EE group showed a higher number of mitophagosomes and normal mitochondria, fewer mitolysosomes, and relatively increased mitochondrial membrane potential. Conclusion: These results suggested that EE enhances autophagy flux by inhibiting mTOR and enhances mitophagy flux via recruiting Drp1 and Parkin to eliminate dysfunctional mitochondria, which in turn inhibits inflammation and alleviates neurological deficits. Limitations. The specific mechanisms through which EE promotes autophagy and mitophagy and the signaling pathways that link them with inflammation need further study.


Assuntos
AVC Isquêmico , Traumatismo por Reperfusão , Animais , Autofagia , Infarto da Artéria Cerebral Média/metabolismo , Inflamação , Camundongos , Mitofagia , Neuroproteção , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases/metabolismo
4.
Biotechnol Lett ; 44(9): 1063-1072, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35918621

RESUMO

AIM: To investigate the impact of deficiency of LIG4 gene on site-specific integration in CHO cells. RESULTS: CHO cells are considered the most valuable mammalian cells in the manufacture of biological medicines, and genetic engineering of CHO cells can improve product yield and stability. The traditional method of inserting foreign genes by random integration (RI) requires multiple rounds of screening and selection, which may lead to location effects and gene silencing, making it difficult to obtain stable, high-yielding cell lines. Although site-specific integration (SSI) techniques may overcome the challenges with RI, its feasibility is limited by the very low efficiency of the technique. Recently, SSI efficiency has been enhanced in other mammalian cell types by inhibiting DNA ligase IV (Lig4) activity, which is indispensable in DNA double-strand break repair by NHEJ. However, this approach has not been evaluated in CHO cells. In this study, the LIG4 gene was knocked out of CHO cells using CRISPR/Cas9-mediated genome editing. Efficiency of gene targeting in LIG4-/--CHO cell lines was estimated by a green fluorescence protein promoterless reporter system. Notably, the RI efficiency, most likely mediated by NHEJ in CHO, was inhibited by LIG4 knockout, whereas SSI efficiency strongly increased 9.2-fold under the precise control of the promoter in the ROSA26 site in LIG4-/--CHO cells. Moreover, deletion of LIG4 had no obvious side effects on CHO cell proliferation. CONCLUSIONS: Deficiency of LIG4 represents a feasible strategy to improve SSI efficiency and suggests it can be applied to develop and engineer CHO cell lines in the future.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Células CHO , Sistemas CRISPR-Cas/genética , Cricetinae , Cricetulus , Reparo do DNA por Junção de Extremidades/genética , DNA Ligase Dependente de ATP/genética
5.
Langmuir ; 37(20): 6337-6346, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33977717

RESUMO

2D/2D MoS2/g-C3N4 (MCN) surface heterostructures were created by second thermal polymerization of bulk g-C3N4 and the reaction of thiourea and MoO3 at 670 °C. MoS2 networks grew vertically along the (002) facet on superior thin g-C3N4 nanosheets. The layered heterostructures drastically improved the Cr(VI) removal ability. In the dark case, 27% of Cr(VI) was removed within 45 min. The result indicates that the adsorption of Cr(VI) was a chemical adsorption process involving the sharing and transfer of electrons. The equilibrium data indicate that the adsorbent was covered with a monolayer adsorbate, which conformed to the Langmuir isotherm model (R2 = 0.9618). In addition, MCN nanocomposites could convert Cr(VI) into non-toxic Cr(III) by photoreduction under visible light irradiation. With an optimized composition, 100% of Cr(VI) was removed within 30 min, which was ∼10 times quicker compared with Cr(VI) removal under dark conditions. Because g-C3N4 nanosheets (sample CN670) with higher photocurrent density revealed the lowest photoreduction Cr(VI) ability, adsorption plays an important role in Cr(VI) removal. For MoS2/g-C3N4 nanocomposites used in Cr(VI) removal, adsorption and photoreduction were incorporated together to get excellent performance.

6.
Biomed Res Int ; 2023: 4143633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817860

RESUMO

Stroke seriously affects human health. Many studies have shown that enriched environment (EE) can promote functional recovery after stroke, but the intrinsic mechanisms remain unclear. In order to study the internal mechanisms of EE involved in functional recovery after ischemic stroke and which mechanism plays a leading role in the recovery of limb function after cerebral infarction, key proteins potentially involved in neuronal protection and synaptic remodeling in the ischemic penumbra have been investigated. In this study, adult C57BL/6 mice after permanent middle cerebral artery occlusion (pMCAO) were assigned to the EE and standard housing (SH) groups 3 days after operation. The EE house was spacious that contained a large variety of small toys; the SH was a normal sized cage. Sham-operated mice without artery occlusion were housed under standard conditions and were fed a normal diet. On days 3, 7, 14, and 21, postoperative motor functional recovery was tested using the modified neurological severity score (mNSS) and the Rotarod test. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), growth-associated protein-43 (GAP-43), and synaptophysin (SYN) was examined by western blotting and immunofluorescence staining. The motor functional recovery (based on the mNSS and Rotarod test 3, 7, 14, and 21 days post operation) of mice in the EE group improved significantly compared to the SH group. The expression of GAP-43 and SYN and the ratio of Bcl-2/Bax were all upregulated in the EE group compared to the SH group. In addition, we also explored the relationship between neuronal protection and synaptic remodeling in the EE-mediated recovery of limb function after cerebral infarction by correlation analysis. Correlation analysis showed that compared with the increase of Bcl-2/Bax ratio, the increased expression of GAP-43 and SYN was more closely related to the recovery of limb function in ischemic mice. These data support the hypothesis that EE can promote the process of improvement of limb dysfunction induced by ischemic stroke, and this behavior restoration may, via promoting neuroprotection in the ischemic penumbra, be dependent on the regulation of the expression of GAP-43, SYN, Bcl-2, and Bax. A limitation of the study was that we only observed several representative key indicators of synaptic remodeling and neuronal apoptosis, without an in-depth study of the potential mechanisms involved.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Neuroproteção , Proteína X Associada a bcl-2 , Proteína GAP-43 , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média , Modelos Animais de Doenças
7.
Materials (Basel) ; 15(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057334

RESUMO

As the key materials of aircraft engines, nickel-based superalloys have excellent comprehensive properties. Mircotensile experiments were carried out based on in situ digital image correlation (DIC) and in situ synchrotron radiation (SR) technique. The effects of the δ phase on the grain orientation, surface roughening, and strain localization were investigated. The results showed that the average kernel average misorientation (KAM) value of the fractured specimens increased significantly compared with that of the heat-treated specimens. The surface roughness decreased with an increasing volume fraction of the δ phase. The strain localization of specimens increased with the increasing ageing time. The size and volume fraction of voids gradually increased with the increase in plastic strain. Some small voids expanded into large voids with a complex morphology during micro-tensile deformation. The needle-like δ phase near the fracture broke into short rods, while the minor spherical δ phase did not break. The rod-like and needle-like δ phases provided channels for the propagation of the microcrack, and the accumulation of the microcrack eventually led to the fracture of specimens.

8.
Int Immunopharmacol ; 111: 109093, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930912

RESUMO

The development of combination therapy that can modulate the tumor immunosuppressive microenvironment is highly desirable for cancer immunotherapy. Icaritin (ICT), a hydrolytic product of icariin from genus Epimedium, has been used as an anti-cancer immunoregulatory agent for many types of cancers. Herein, we design a novel therapeutic strategy for mice melanoma that combines systemic administration of icaritin with intratumoral injection of unmethylated cytosine-guanine oligodeoxynucleotide (CpG). Icaritin induces tumor cell apoptosis and increases tumor immunogenicity. The combination of icaritin with CpG synergistically suppresses tumor growth and significantly prolonged survival time of B16F10 melanoma bearing mice. importantly, the anti-tumor effects of this combination strategy are associated with the reversing of immunosuppressive microenvironment through increased recruitment of functional DCs and tumor-associated macrophages (TAM) in tumors, leading to the infiltration of cytotoxic CD8+ T cells expressing elevated levels of IFN-γ and TNF-α. Furthermore, the combination of icaritin with CpG augments the anti-tumor immune response to anti-PD-1/CTLA-4 immune checkpoint blockade treatment. These results support the combination of icaritin with CpG as a novel strategy to elicit effective T cell-mediated antitumor immune response.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Animais , Linhagem Celular Tumoral , Flavonoides , Imunidade Celular , Injeções Intralesionais , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
9.
Materials (Basel) ; 14(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34832248

RESUMO

The performance of clad foils in microforming deserves to be studied extensively, where the strain rate sensitivity of the clad foil concerning the forming performance is a crucial factor. In this paper, the strain rate sensitivity of the mechanical properties of coarse-grained (CG) Cu/Ni clad foils in the quasi-static strain rate range (ε˙=10-4 s-1~10-1 s-1) is explored by uniaxial tensile tests under different strain rates. The results show that the strength and ductility increase with strain rate, and the strain rate sensitivity m value is in the range of 0.012~0.015, which is three times the value of m for CG pure Cu. The fracture morphology shows that slip bands with different directions are entangled in localized areas near the interface layer. Molecular dynamics simulations demonstrate the formation of many edged dislocations at the Cu/Ni clad foils interface due to a mismatch interface. The improved ductility and strain rate sensitivity is attributed to the interaction and plugging of the edged dislocations with high density in the interface layer. Additionally, the influence of size effect on mechanical properties is consistently present in the quasi-static strain rate range. This paper helps to understand the strain rate sensitivity of CG clad foils and to develop clad foils in microforming processes.

10.
Neural Regen Res ; 16(8): 1460-1466, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33433459

RESUMO

Currently, no specific treatment exists to promote recovery from cognitive impairment after a stroke. Dysfunction of the actin cytoskeleton correlates well with poststroke cognitive declines, and its reorganization requires proper regulation of Rho-associated kinase (ROCK) proteins. Fasudil downregulates ROCK activation and protects neurons against cytoskeleton collapse in the acute phase after stroke. An enriched environment can reduce poststroke cognitive impairment. However, the efficacy of environmental enrichment combined with fasudil treatment remains poorly understood. A photothrombotic stroke model was established in 6-week-old male C57BL/6 mice. Twenty-four hours after modeling, these animals were intraperitoneally administered fasudil (10 mg/kg) once daily for 14 successive days and/or provided with environmental enrichment for 21 successive days. After exposure to environmental enrichment combined with fasudil treatment, the number of neurons in the hippocampal CA1 region increased significantly, the expression and proportion of p-cofilin in the hippocampus decreased, and the distribution of F-actin in the hippocampal CA1 region increased significantly. Furthermore, the performance of mouse stroke models in the tail suspension test and step-through passive avoidance test improved significantly. These findings suggest that environmental enrichment combined with fasudil treatment can ameliorate memory dysfunction through inhibition of the hippocampal ROCK/cofilin pathway, alteration of the dynamic distribution of F-actin, and inhibition of neuronal death in the hippocampal CA1 region. The efficacy of environmental enrichment combined with fasudil treatment was superior to that of fasudil treatment alone. This study was approved by the Animal Ethics Committee of Fudan University of China (approval No. 2019-Huashan Hospital JS-139) on February 20, 2019.

11.
Adv Mater ; 33(6): e2000893, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32924211

RESUMO

With the rapid development of micro-electromechanical systems (MEMS), micro/nanoscale fabrication of 3D metallic structures with complex structures and multifunctions is becoming more and more important due to the recent trend of product miniaturization. As a promising micromanufacturing approach based on plastic deformation, micro/nanoforming shows the attractive advantages of high productivity, low cost, near-net-shape, and excellent mechanical properties, compared with other non-silicon-based micromanufacturing technologies. However, micro/nanoforming is far less established due to the so-called size effects in terms of materials models, process laws, tooling design, etc. The understanding of basic issues on micro/nanoforming is not yet mature, and it is currently a topic of rigorous investigation. Here, a systematic review on the micro/nanoforming processes of 3D structures with multifunctional properties is presented, wherein also a critical examination of the interplay between relevant length scales and size effects affecting the structural integrity of micro/mesoscale metallic systems is also provided. Finally, the challenges of micro/nanoscale fabrication are proposed, including the development trends of new micro/nanoforming processes, multiple field coupling effects, and theoretical modeling at the trans-scale.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33505485

RESUMO

Poststroke cognitive impairment severely affects the long-term recovery of patients. However, it remains unknown whether an enriched environment can remodel contralateral hippocampal function and promote cognitive function recovery after cerebral ischemic injury. To further explore, 36 C57BL/6 mice that underwent permanent middle cerebral artery occlusion (pMCAO) were randomly assigned to three groups: enriched environment (EE), standard condition (SC), and sham surgery (Sham). After 21 days of intervention, the Morris water maze and step-through test was utilized for testing the cognitive function of the mice, cresyl violet staining for measuring the degree of atrophy in the hippocampal tissues, and western blotting for quantitating the expression levels of GA1B, GAD67, and NR2B, and immunohistochemistry for levels of NR2B in the CA1 region of the contralateral hippocampus. The results showed that cognitive function-related behavioral performance decreased in the SC group, and performance was better in the EE group than that in the SC group (p < 0.01); no significant difference in the degree of contralateral cerebral atrophy was observed between the EE and SC groups (p > 0.05); levels of GA1B, GAD67, and NR2B in the contralateral hippocampus were significantly higher in the EE group than those in the SC group (p < 0.01); and the level of NR2B in the CA1 region of the contralateral hippocampus significantly increased in the EE group compared to the SC group (p < 0.01). We believe that contralateral hippocampal function is inhibited after cerebral ischemic injury, further affecting cognitive function. However, enriched environment can upregulate GABAergic and glutamatergic systems in the contralateral hippocampus to promote cognitive function recovery after cerebral ischemic injury.

13.
Materials (Basel) ; 13(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521734

RESUMO

In this study, a new model involving energy is established to characterize the size effect on flow stress. The new model treats the experimental machine and the specimen as an isolated system, and this isolated system satisfies the Energy Conservation Law. The total work performed on the specimen by the experimental machine is nearly equal to the energy consumed by the specimen plastic deformation and the energy consumed by friction (which can be ignored when working without friction). The new model predicts the energy consumption of the specimen deformation by quantifying the total energy input to the specimen by the experimental machine and then obtaining the relevant parameters of the constitutive model. Through uniaxial tensile tests of pure nickel thin sheets with various thickness/average grain sizes (t/d), the new model was used to optimize the parameters of the existing constitutive model that predicts the flow stress of specimens with different t/d. The prediction accuracy of the optimized constitutive model is improved, especially for specimens with a t/d < 1. The new model is established from the perspective of energy input to avoid the analysis of the material deformation mechanism and improve the prediction accuracy.

14.
J Mol Neurosci ; 70(3): 413-421, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31782057

RESUMO

An enriched environment (EE) can stimulate the recovery of neurological function following a cerebral ischaemia-reperfusion injury; however, the impact of EE's on mitochondrial function has been insufficiently studied. Our research aimed to assess whether EE's therapeutic impact involved the enhancement of mitochondrial dysfunction. Following 2 weeks of EE training, we tested both mitochondrial function and mitochondria-associated protein expression within the cerebral cortex following cerebral ischaemia-reperfusion injury. We subjected Sprague-Dawley rats to transient focal cerebral ischaemia and categorized the rats into three separate groups, i.e. an enriched environment (EE) group, a standard condition (SC) group and a sham control group (no middle cerebral artery embolization). The rats within the EE group were raised in enriched conditions for 2 weeks, while the rats within the SC group, in comparison, were reared in standard conditions for 2 weeks. After 2 weeks, the cerebral cortices of the rats were removed. We then measured a series of indices, i.e. the protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α), nuclear respiratory factor-1 (NRF-1), mitochondrial transcription factor A (TFAM) and mitochondrial protein cytochrome C oxidase subunit IV (COX IV). Furthermore, the number of mitochondria was evaluated through electron microscopy.EE upregulated the protein expression of PGC-1α, NRF-1 as well as TFAM, which function as the master regulators of mitochondrial biogenesis, in comparison with the SC group. The EE group's COX IV protein expression also exhibited an increase. Moreover, the amount of mitochondria in the peri-infarct region of the cortex increased as result of EE training. Over 2 weeks, EE training significantly increased mitochondrial biogenesis-associated protein expression and mitochondrial function. A possible mechanism of the EE leading to the improvement of neurological function is that it increases brain mitochondrial biogenesis after the rats' cerebral ischaemia-reperfusion injury. Mitochondrial biogenesis stimulation or enhancement could become an innovative strategy for neuroprotection in future treatment.


Assuntos
Encéfalo/metabolismo , Meio Ambiente , Infarto da Artéria Cerebral Média/terapia , Mitocôndrias/metabolismo , Condicionamento Físico Animal/métodos , Animais , Encéfalo/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Fator 1 Relacionado a NF-E2/genética , Fator 1 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Neural Regen Res ; 15(9): 1671-1677, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32209771

RESUMO

Many studies have shown that fibronectin type III domain-containing protein 5 (FDNC5) and brain-derived neurotrophic factor (BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia; however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion (pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16-20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions (based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities (based on the spatial learning scores from the Morris water maze test 16-19 days after operation), and memory abilities (based on the memory scores of the Morris water maze test 20 days after operation) of the enriched environment group improved significantly. In addition, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex increased in the enriched environment group compared with those in the standard housing condition group. Furthermore, the Pearson correlation coefficient showed that neurobehavioral functions were positively associated with the expression levels of FDNC5 and BDNF (r = 0.587 and r = 0.840, respectively). These findings suggest that an enriched environment upregulates FDNC5 protein expression in the ipsilateral cerebral cortex after cerebral ischemia, which then activates BDNF protein expression, improving neurological function. BDNF protein expression was positively correlated with improved neurological function. The experimental protocols were approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval Nos. 20160858A232, 20160860A234) on February 24, 2016.

16.
Materials (Basel) ; 12(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382406

RESUMO

Nickel-based superalloys have become key materials for turbine disks and other aerospace components due to their excellent mechanical properties at high temperatures. Mechanical properties of nickel-based superalloys are closely related to their microstructures. Various heat treatment processes were conducted to obtain the desired microstructures of a nickel-based superalloy in this study. The effect of the initial microstructures on the tensile deformation and fracture behaviors was investigated via in situ digital image correlation (DIC) and synchrotron radiation X-ray tomography (SRXT). The results showed that the size and volume fraction of γ″ and γ' phases increased with the aging time. The yield strength and the ultimate tensile strength increased due to the precipitation strengthening at the expense of ductility. The surface strain analysis showed severely inhomogeneous deformation. The local strains at the edge of specimens were corresponded to higher void densities. The fracture of carbides occurred owing to the stress concentration, which was caused by the dislocation accumulation. The fracture mode was dimple coalescence ductile fracture.

17.
Front Neurol ; 10: 1189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781025

RESUMO

Ischemic stroke is the second leading cause of death worldwide. Ischemia-induced cognitive dysfunction may result in a poor quality of life. Synaptic plasticity plays a key role in cognition promotion. An enriched environment (EE), which can attenuate cognitive deficits in chronic cerebral hypoperfusion, has been shown to facilitate synaptic plasticity. However, the effect of EE on synaptic plasticity in bilateral cerebral hemispheres in stroke remains unclear. This study used a permanent middle cerebral artery occlusion mouse model, which was divided into standard housing and EE groups. The Morris water maze test was performed to detect the cognitive function. Electron microscopy was used to determine the synapse numbers. The expression of SYN and GAP-43 was then quantified by immunofluorescence staining and Western blot analysis. Compared with the standard housing, EE promoted the cognitive function recovery in the mice with stroke. Moreover, EE increased the synapse numbers and the expression of SYN and GAP-43 in both the ipsilateral and contralateral hemispheres (P < 0.05). A further correlation analysis revealed a positive correlation between the cognitive function outcomes and the relative expression of GAP-43 and SYN. Furthermore, the correlation of the expression of GAP-43 and SYN with cognitive function was higher in the contralateral brain than in the ipsilateral brain. In conclusion, an EE may promote cognitive function via bilateral synaptic remodeling after cerebral ischemia. Also, the contralateral brain may play an important role in the recovery of cognitive function.

18.
Neural Regen Res ; 14(3): 462-469, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30539814

RESUMO

Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant (northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.

19.
Aging Dis ; 10(3): 530-543, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31164998

RESUMO

The level of cerebellar activity in stroke patients has been shown to correlate with the extent of functional recovery. We reasoned that the cerebellum may be an important player in post-stroke rehabilitation. Because the neurons in the deep cerebellar nuclei (DCN) represent virtually all of the output from the cerebellum, in this study, using environmental enrichment (EE) to promote rehabilitation, we investigated the influence of the optogenetic neuronal modulation of DCN on EE-induced rehabilitation. We found that neuronal inhibition of the DCN almost completely blocked motor recovery in EE treated mice, but the stroke mice with neuronal activation of the DCN achieved a similar recovery level as those in the EE treated group. No difference was observed in anxiety-like behavior. Moreover, Htr2a in the DCN, the gene encoding 5-HT2A receptor, was shown to be a hub gene in the protein-protein interaction network identified using RNA-seq. This indicated that 5-HT2A receptor-mediated signaling may be responsible for DCN-dependent functional improvement in EE. We further verified this using the 5-HT2A receptor antagonist, MDL100907, to inhibit the function of 5-HT2A receptor in the DCN. This treatment resulted in impaired recovery in EE treated mice, who performed at a level as poor as the stroke-only group. Thus, this work contributes to an understanding of the importance of the DCN activation in EE-induced post-stroke rehabilitation. Attempts to clarify the mechanism of 5-HT2A receptor-mediated signaling in the DCN may also lead to the creation of a pharmacological mimetic of the benefits of EE-induced rehabilitation.

20.
Sci Rep ; 6: 23895, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27049754

RESUMO

In this study, interactive effects of microstructure and cavity dimension on the filling behaviors in micro coining were investigated. The results indicate that the filling ability is dependent on both the cavity width t and the ratio of cavity width to grain size t/d strongly. The critical ratio t/d for the worst filling ability increases with cavity width t and tends to disappear when the cavity width t increases to 300 µm. A polycrystalline filling model considering the friction size effect, effect of constrained grains by the tools, grain size, cavity width and ratio of cavity width to grain size is proposed to reveal the filling size effect in micro coining. A quasi in-situ Electron Backscatter Diffraction (EBSD) method is proposed to investigate filling mechanism in micro coining. When several grains across the cavity width, each grain deforms heterogeneously to ordinate the deformation compatibility. When there is only one grain across the cavity width, the grain is fragmented into several smaller grains with certain prolongation along the extrusion direction to coordinate the deformation in the cavity. This is different from the understandings before. Then the filling deformation mechanism is revealed by a proposed model considering the plastic flow in micro coining.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa