Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Virol ; 97(3): e0181922, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36815785

RESUMO

Human papillomaviruses (HPV) are small DNA viruses associated with cervical cancer, warts, and other epithelial tumors. Structural studies have shown that the HPV capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers in a T=7 icosahedral lattice, coassembling with substoichiometric amounts of the minor capsid protein, L2. However, the residues involved in the coassembly of L1 and L2 remain undefined due to the lack of structure information. Here, we investigated the solvent accessibility surfaces (SASs) of the central cavity residues of the HPV16 L1 pentamer in the crystal structure because those internal exposed residues might mediate the association with L2. Twenty residues in L1 protein were selected to be analyzed, with four residues in the lumen of the L1 pentamer identified as important: F256, R315, Q317, and T340. Mutations to these four residues reduced the PsV (pseudovirus) infection capacity in 293FT cells, and mutations to R315, Q317, and T340 substantially perturb L2 from coassembling into L1 capsid. Compared with wild-type (WT) PsVs, these mutant PsVs also have a reduced ability to become internalized into host cells. Finally, we identified a stretch of negatively charged residues on L2 (amino acids [aa] 337 to 340 [EEIE]), mutations to which completely abrogate L2 assembly into L1 capsid and subsequently impair the endocytosis and infectivity of HPV16 PsVs. These findings shed light on the elusive coassembly between HPV L1 and L2. IMPORTANCE Over 200 types of HPV have been isolated, with several high-risk types correlated with the occurrence of cervical cancer. The HPV major capsid protein, L1, assembles into a T=7 icosahedral viral shell, and associates with the minor capsid protein, L2, which plays a critical role in the HPV life cycle. Despite the important role of the L2 protein, its structure and coassembly with L1 remain elusive. In this study, we analyzed the amino acid residues at the proposed interface between L1 and L2. Certain mutations at these sites decreased the amount of L2 protein assembled into the capsid, which, in turn, led to a decrease in viral infectivity. Knowledge about these residues and the coassembly of L1 and L2 could help to expand our understanding of HPV biology and aid in the development of countermeasures against a wide range of HPV types by targeting the L2 protein.


Assuntos
Proteínas do Capsídeo , Papillomavirus Humano 16 , Feminino , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Infecções por Papillomavirus/virologia , Sequência de Aminoácidos/genética , Mutação , Linhagem Celular , Estrutura Terciária de Proteína/genética , Modelos Moleculares
2.
Proc Natl Acad Sci U S A ; 116(52): 26933-26940, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818956

RESUMO

In adaptive immunity, organisms produce neutralizing antibodies (nAbs) to eliminate invading pathogens. Here, we explored whether viral neutralization could be attained through the physical disruption of a virus upon nAb binding. We report the neutralization mechanism of a potent nAb 8C11 against the hepatitis E virus (HEV), a nonenveloped positive-sense single-stranded RNA virus associated with abundant acute hepatitis. The 8C11 binding flanks the protrusion spike of the HEV viruslike particles (VLPs) and leads to tremendous physical collision between the antibody and the capsid, dissociating the VLPs into homodimer species within 2 h. Cryo-electron microscopy reconstruction of the dissociation intermediates at an earlier (15-min) stage revealed smeared protrusion spikes and a loss of icosahedral symmetry with the capsid core remaining unchanged. This structural disruption leads to the presence of only a few native HEV virions in the ultracentrifugation pellet and exposes the viral genome. Conceptually, we propose a strategy to raise collision-inducing nAbs against single spike moieties that feature in the context of the entire pathogen at positions where the neighboring space cannot afford to accommodate an antibody. This rationale may facilitate unique vaccine development and antimicrobial antibody design.

3.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925655

RESUMO

Human infection with highly pathogenic avian influenza A viruses causes severe disease and fatalities. We previously identified a potent and broadly neutralizing antibody (bnAb), 13D4, against the H5N1 virus. Here, we report the co-crystal structure of 13D4 in complex with the hemagglutinin (HA) of A/Vietnam/1194/2004 (H5N1). We show that heavy-chain complementarity-determining region 3 (HCDR3) of 13D4 confers broad yet specific neutralization against H5N1, undergoing conformational rearrangement to bind to the receptor binding site (RBS). Further, we show that mutating four critical residues within the RBS-Trp153, Lys156, Lys193, and Leu194-disrupts the binding between 13D4 and HA. Viruses bearing Asn193 instead of Lys/Arg can evade 13D4 neutralization, indicating that Lys193 polymorphism might be, at least in part, involved in the antigenicity of recent H5 genotypes (such as H5N6 and H5N8) as distinguished from H5N1. BnAb 13D4 may offers a template for therapeutic RBS inhibitor design and serve as an indicator of antigenic change for current H5 viruses.IMPORTANCE Infection by highly pathogenic avian influenza A virus remains a threat to public health. Our broadly neutralizing antibody, 13D4, is capable of neutralizing all representative H5N1 viruses and protecting mice against lethal challenge. Structural analysis revealed that 13D4 uses heavy-chain complementarity-determining region 3 (HCDR3) to fit the receptor binding site (RBS) via conformational rearrangement. Four conserved residues within the RBS are critical for the broad potency of 13D4. Importantly, polymorphism of Lys193 on the RBS may be associated with the antigenicity shift from H5N1 to other newly emerging viruses, such as H5N6 and H5N8. Our findings may pave the way for highly pathogenic avian influenza virus vaccine development and therapeutic RBS inhibitor design.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Substituição de Aminoácidos , Animais , Cristalografia por Raios X , Análise Mutacional de DNA , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Evasão da Resposta Imune , Camundongos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Ligação Proteica , Conformação Proteica
4.
Protein Expr Purif ; 133: 110-120, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28267627

RESUMO

Human papillomavirus (HPV) is widely accepted to be the major causative pathogen of cervical cancer, warts, and other epithelial tumors. Virus infection and subsequent disease development can be prevented by vaccination with HPV vaccines derived from eukaryotic expression systems. Here, we report the soluble expression of the major capsid protein L1 of HPV31, a dominant carcinogenic HPV genotype, in Escherichia coli. HPV31 L1 protein and its elongated form (L1+) were observed in SDS-PAGE and CE-SDS analysis, generated by the native HPV31 L1 gene with a TAA stop codon. Replacing the TAA with TAG but not TGA could completely terminate protein translation. Mass spectrometry sequencing showed that L1+ comprised L1 with a C-terminal extension of 38 amino acids (aa). RNA folding analysis revealed that the unfaithful L1+ expression may result from translational read-through, as TAG is more stable and accessible than the other stop codons. The 38-aa elongated fragment perturbs self-assembly of HPV31 L1+, as shown in size and morphology analyses. By 3D cryo-electron microscopy structure determination, we show self-assembly of purified HPV31 L1 (TAG) VLPs into T = 7 icosahedral symmetry particles, resembling the native HPV virion. Finally, through additional characterization and antigenicity/immunogenicity assays, we verified that the E.coli-derived HPV31 VLPs are an ideal immunogen for HPV vaccine development. Our findings outline a codon optimization stratagem for protein expression and provide a method for the in-depth investigation of prokaryotic translation regulation.


Assuntos
Proteínas do Capsídeo , Códon de Terminação , Expressão Gênica , Papillomavirus Humano 31/genética , Mutagênese , Proteínas Oncogênicas Virais , Vacinas contra Papillomavirus , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Papillomavirus Humano 31/metabolismo , Humanos , Proteínas Oncogênicas Virais/biossíntese , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Vacinas contra Papillomavirus/biossíntese , Vacinas contra Papillomavirus/química , Vacinas contra Papillomavirus/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
Crit Rev Food Sci Nutr ; 54(12): 1548-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24580557

RESUMO

Accompanied by industrial globalization, rapid urbanization, and population increment, mass production and staple trading for food consumption are upsoaring continuously, foodborne disease resulted from various food safety issues is currently a crucial public health concern worldwide, which has not only created a great burden on both economy and society, but also greatly threatened the sustainability of mankind's livelihood and human reproduction. In order to better ensure food safety and thus effectively curb the occurrence of foodborne diseases, the development and evolving of inspection strategies are indispensable measures for quality assurance and conformity assessment. Nowadays, as complementary measures to and with advantageous merits over classic analytical methods, highly specific and selective aptamer-based assays have found their increasingly important roles in various domains of food analysis. This critical review summarizes the advantages of aptamer as compared with antibody, introduces important evolving variants of systematic evolution of ligands by exponential enrichment (SELEX), and presents an overview of potential aptamer applications for food safety.


Assuntos
Inocuidade dos Alimentos/métodos , Técnica de Seleção de Aptâmeros/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Saúde Pública
6.
Curr Med Imaging ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38258591

RESUMO

BACKGROUND: Multisystem information, including musculoskeletal information, can be captured from chest CT scans of patients with COVID-19 without further examination. AIMS: This study aims to assess the relationship between chest CT-extracted baseline bone mineral density (BMD) and body composition parameters and the length of hospital stay in these patients. METHODS: A retrospective analysis was performed in a cohort of 88 patients with COVID-19. Correlation analysis and a generalized linear model (GLM) were used to assess the associations between the length of hospital stay and covariates, including age, sex, body mass index (BMI), BMD and body composition variables. RESULTS: The mean length of hospital stay was 27.4±8.7 days. The length of hospital stay was significantly positively associated with age (r=0.202, p=0.046) and the paraspinal muscle fat ratio (r=0.246, p=0.021). The GLM involving age, sex, BMD, paraspinal muscle fat ratio, subcutaneous adipose tissue (SAT) area, visceral adipose tissue (VAT) area, and liver fat fraction (LFF) showed that the length of hospital stay was positively correlated with VAT area (ß coefficients, 95% CI: 9.304, 1.141-17.478, p=0.025). CONCLUSION: The musculoskeletal features extracted from chest CT correlated with the prognosis of COVID-19 patients. Factors including old age, a higher paraspinal muscle fat ratio and a larger VAT area in patients with COVID-19 were associated with longer hospital stays.

7.
Sci Bull (Beijing) ; 69(4): 512-525, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38160175

RESUMO

In vaccine development, broadly or cross-type neutralizing antibodies (bnAbs or cnAbs) are frequently targeted to enhance protection. Utilizing immunodominant antibodies could help fine-tune vaccine immunogenicity and augment the precision of immunization strategies. However, the methodologies to capitalize on the attributes of bnAbs in vaccine design have not been clearly elucidated. In this study, we discovered a cross-type neutralizing monoclonal antibody, 13H5, against human papillomavirus 6 (HPV6) and HPV11. This nAb exhibited a marked preference for HPV6, demonstrating superior binding activity to virus-like particles (VLPs) and significantly higher prevalence in anti-HPV6 human serum as compared to HPV11 antiserum (90% vs. 31%). Through co-crystal structural analysis of the HPV6 L1 pentamer:13H5 complex, we delineated the epitope as spanning four segments of amino acids (Phe42-Ala47, Gly172-Asp173, Glu255-Val275, and Val337-Tyr351) on the L1 surface loops. Further interaction analysis and site-directed mutagenesis revealed that the Ser341 residue in the HPV6 HI loop plays a critical role in the interaction between 13H5 and L1. Substituting Ser341 with alanine, which is the residue type present in HPV11 L1, almost completely abolished binding activity to 13H5. By swapping amino acids in the HPV11 HI loop with corresponding residues in HPV6 L1 (Ser341, Thr338, and Thr339), we engineered chimeric HPV11-6HI VLPs. Remarkably, the chimeric HPV11-6HI VLPs shifted the high immunodominance of 13H5 from HPV6 to the engineered VLPs and yielded comparable neutralization titers for both HPV6 and HPV11 in mice and non-human primates. This approach paves the way for the design of broadly protective vaccines from antibodies within the main immunization reservoir.


Assuntos
Vacinas contra Papillomavirus , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Proteínas do Capsídeo/genética , Anticorpos Antivirais , Papillomavirus Humano 6 , Imunização , Aminoácidos
8.
NPJ Vaccines ; 7(1): 134, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316367

RESUMO

In vaccinology, a potent immunogen has two prerequisite attributes-antigenicity and immunogenicity. We have rational designed a triple-type HPV vaccine against HPV58, -33 and -52 covered in Gardasil 9 based on the sequence homology and similar surface loop structure of L1 protein, which is related to cross-type antigenicity. Here, we design another triple-type vaccine against non-vaccine types HPV39, -68 and -70 by immunogenicity optimization considering type specific immunodominant epitopes located in separate region for different types. First, we optimized the expression of wild-type HPV39, -68 and -70 L1-only virus-like particles (VLPs) in E. coli through N-terminal truncation of HPV L1 proteins and non-fusion soluble expression. Second, based on genetic relationships and an L1 homologous loop-swapping rationale, we constructed several triple-type chimeric VLPs for HPV39, -68 and -70, and obtained the lead candidate named H39-68FG-70DE by the immunogenicity optimization using reactivity profile of a panel type-specific monoclonal antibodies. Through comprehensive characterization using various biochemical, VLP-based analyses and immune assays, we show that H39-68FG-70DE assumes similar particulate properties as that of its parental VLPs, along with comparable neutralization immunogenicity for all three HPV types. Overall, this study shows the promise and translatability of an HPV39/68/70 triple-type vaccine, and the possibility of expanding the type-coverage of current HPV vaccines. Our study further expanded the essential criteria on the rational design of a cross-type vaccine, i.e. separate sites with inter-type similar sequence and structure as well as type-specific immunodominant epitope to be clustered together.

9.
ISME J ; 14(7): 1847-1856, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32327733

RESUMO

Chlorine disinfection to drinking water plays an important role in preventing and controlling waterborne disease outbreaks globally. Nevertheless, little is known about why it enriches the antibiotic resistance genes (ARGs) in bacteria after chlorination. Here, ARGs released from killed antibiotic-resistant bacteria (ARB), and culturable chlorine-injured bacteria produced in the chlorination process as the recipient, were investigated to determine their contribution to the horizontal transfer of ARGs during disinfection treatment. We discovered Escherichia coli, Salmonella aberdeen, Pseudomonas aeruginosa and Enterococcus faecalis showed diverse resistance to sodium hypochlorite, and transferable RP4 could be released from killed sensitive donor consistently. Meanwhile, the survival of chlorine-tolerant injured bacteria with enhanced cell membrane permeabilisation and a strong oxidative stress-response demonstrated that a physiologically competent cell could be transferred by RP4 with an improved transformation frequency of up to 550 times compared with the corresponding untreated bacteria. Furthermore, the water quality factors involving chemical oxygen demand (CODMn), ammonium nitrogen and metal ions (Ca2+ and K+) could significantly promote above transformation frequency of released RP4 into injured E. faecalis. Our findings demonstrated that the chlorination process promoted the horizontal transfer of plasmids by natural transformation, which resulted in the exchange of ARGs across bacterial genera and the emergence of new ARB, as well as the transfer of chlorine-injured opportunistic pathogen from non-ARB to ARB. Considering that the transfer elements were quite resistant to degradation through disinfection, this situation poses a potential risk to public health.


Assuntos
Cloro , Desinfecção , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Bactérias/genética , Cloro/farmacologia , Farmacorresistência Bacteriana , Resistência Microbiana a Medicamentos , Genes Bacterianos
10.
Nat Commun ; 11(1): 2841, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503989

RESUMO

The capsid of human papillomavirus (HPV) spontaneously arranges into a T = 7 icosahedral particle with 72 L1 pentameric capsomeres associating via disulfide bonds between Cys175 and Cys428. Here, we design a capsomere-hybrid virus-like particle (chVLP) to accommodate multiple types of L1 pentamers by the reciprocal assembly of single C175A and C428A L1 mutants, either of which alone encumbers L1 pentamer particle self-assembly. We show that co-assembly between any pair of C175A and C428A mutants across at least nine HPV genotypes occurs at a preferred equal molar stoichiometry, irrespective of the type or number of L1 sequences. A nine-valent chVLP vaccine-formed through the structural clustering of HPV epitopes-confers neutralization titers that are comparable with that of Gardasil 9 and elicits minor cross-neutralizing antibodies against some heterologous HPV types. These findings may pave the way for a new vaccine design that targets multiple pathogenic variants or cancer cells bearing diverse neoantigens.


Assuntos
Proteínas do Capsídeo/imunologia , Neoplasias/terapia , Papillomaviridae/imunologia , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Desenho de Fármacos , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Animais , Mutação , Neoplasias/virologia , Testes de Neutralização , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/genética , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia
11.
Emerg Microbes Infect ; 8(1): 1721-1733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31769733

RESUMO

Human papillomavirus type 6 (HPV6) is the major etiologic agent of genital warts and recurrent respiratory papillomatosis. Although the commercial HPV vaccines cover HPV6, the neutralization sites and mode for HPV6 are poorly understood. Here, we identify the HPV6 neutralization sites and discriminate the inhibition of virus attachment and entry by three potent neutralizing antibodies (nAbs), 5D3, 17D5, and 15F7. Mutagenesis assays showed that these nAbs predominantly target surface loops BC, DE, and FG of HPV6 L1. Cryo-EM structures of the HPV6 pseudovirus (PsV) and its immune complexes revealed three distinct binding modalities - full-occupation-bound to capsid, top-center-bound-, and top-rim-bound to pentamers - and illustrated a structural atlas for three classes of antibody-bound footprints that are located at center-distal ring, center, and center-proximal ring of pentamer surface for 5D3, 17D5, and 15F7, respectively. Two modes of neutralization were identified: mAb 5D3 and 17D5 block HPV PsV from attaching to the extracellular matrix (ECM) and the cell surface, whereas 15F7 allows PsV attachment but prohibits PsV from entering the cell. These findings highlight three neutralization sites of HPV6 L1 and outline two antibody-mediated neutralization mechanisms against HPV6, which will be relevant for HPV virology and antiviral inhibitor design. HighlightsMajor neutralization sites of HPV6 were mapped on the pseudovirus cryo-EM structuremAb 15F7 binds HPV6 capsid with a novel top-rim binding modality and confers a post-attachment neutralizationmAb 17D5 binds capsid in top-centre manner but unexpectedly prevents virus from attachment to cell surface.


Assuntos
Papillomavirus Humano 6/fisiologia , Infecções por Papillomavirus/virologia , Ligação Viral , Internalização do Vírus , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/análise , Anticorpos Antivirais/imunologia , Epitopos/genética , Epitopos/imunologia , Papillomavirus Humano 6/genética , Papillomavirus Humano 6/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Papillomavirus/imunologia
12.
Emerg Microbes Infect ; 7(1): 160, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30254257

RESUMO

Human papillomavirus (HPV) is the causative agent in genital warts and nearly all cervical, anogenital, and oropharyngeal cancers. Nine HPV types (6, 11, 16, 18, 31, 33, 45, 52, and 58) are associated with about 90% of cervical cancers and 90% of genital warts. HPV neutralization by vaccine-elicited neutralizing antibodies can block viral infection and prevent HPV-associated diseases. However, there is only one commercially available HPV vaccine, Gardasil 9, produced from Saccharomyces cerevisiae that covers all nine types, raising the need for microbial production of broad-spectrum HPV vaccines. Here, we investigated whether N-terminal truncations of the major HPV capsid proteins L1, improve their soluble expression in Escherichia coli. We found that N-terminal truncations promoted the soluble expression of HPV 33 (truncated by 10 amino acids [aa]), 52 (15 aa), and 58 (10 aa). The resultant HPV L1 proteins were purified in pentamer form and extensively characterized with biochemical, biophysical, and immunochemical methods. The pentamers self-assembled into virus-like particles (VLPs) in vitro, and 3D cryo-EM reconstructions revealed that all formed T = 7 icosahedral particles having 50-60-nm diameters. Moreover, we formulated a nine-valent HPV vaccine candidate with aluminum adjuvant and L1 VLPs from four genotypes used in this study and five from previous work. Immunogenicity assays in mice and non-human primates indicated that this HPV nine-valent vaccine candidate elicits neutralizing antibody titers comparable to those induced by Gardasil 9. Our study provides a method for producing a nine-valent HPV vaccine in E. coli and may inform strategies for the soluble expression of other vaccine candidates.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Escherichia coli/genética , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Motivos de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/imunologia , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas Virais/administração & dosagem , Proteínas Oncogênicas Virais/imunologia , Papillomaviridae/química , Papillomaviridae/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/química , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/imunologia , Deleção de Sequência
13.
Nat Commun ; 9(1): 5360, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560935

RESUMO

Sequence variability in surface-antigenic sites of pathogenic proteins is an important obstacle in vaccine development. Over 200 distinct genomic sequences have been identified for human papillomavirus (HPV), of which more than 18 are associated with cervical cancer. Here, based on the high structural similarity of L1 surface loops within a group of phylogenetically close HPV types, we design a triple-type chimera of HPV33/58/52 using loop swapping. The chimeric VLPs elicit neutralization titers comparable with a mix of the three wild-type VLPs both in mice and non-human primates. This engineered region of the chimeric protein recapitulates the conformational contours of the antigenic surfaces of the parental-type proteins, offering a basis for this high immunity. Our stratagem is equally successful in developing other triplet-type chimeras (HPV16/35/31, HPV56/66/53, HPV39/68/70, HPV18/45/59), paving the way for the development of an improved HPV prophylactic vaccine against all carcinogenic HPV strains. This technique may also be extrapolated to other microbes.


Assuntos
Desenho de Fármacos , Papillomaviridae/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Avaliação Pré-Clínica de Medicamentos , Epitopos/genética , Epitopos/imunologia , Feminino , Engenharia Genética/métodos , Imunogenicidade da Vacina , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Testes de Neutralização , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Papillomaviridae/genética , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/genética , Filogenia , Organismos Livres de Patógenos Específicos , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia
14.
Vaccine ; 35(35 Pt B): 4637-4645, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28736197

RESUMO

Human papillomavirus (HPV) types 16 and 18 account for approximately 70% of cervical cancer worldwide. Neutralizing HPV prophylactic vaccines offer significant benefit, as they block HPV infection and prevent subsequent disease. However, the three licensed HPV vaccines that cover these two genotypes were produced in eukaryotic cells, which is expensive, particularly for low-income countries where HPV is highest. Here, we report a new HPV16 and -18 bivalent candidate vaccine produced from Escherichia coli. We used two strategies of N-terminal truncation of HPV L1 proteins and soluble non-fusion expression to generate HPV16 and HPV18 L1-only virus-like particles (VLPs) in a scalable process. Through comprehensive characterization of the bivalent candidate vaccine, we confirm lot consistency in a pilot scale-up of 30L, 100L and 500L. Using cryo-EM 3D reconstruction, we found that HPV16 and -18VLPs present in a T=7 icosahedral arrangement, similar in shape and size to that of the native virions. This HPV16/18 bivalent vaccine shares comparable immunogenicity with the licensed vaccines. Overall, we show that the production of a HPV16/18 bivalent vaccine from an E. coli expression system is robust and scalable, with potentially good accessibility worldwide as a population-based immunization strategy.


Assuntos
Escherichia coli/genética , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/imunologia , Vacinas contra Papillomavirus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Escherichia coli/imunologia , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Imunogenicidade da Vacina , Macaca mulatta , Camundongos , Microscopia Eletrônica , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/economia , Vacinas contra Papillomavirus/genética , Neoplasias do Colo do Útero/prevenção & controle , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
15.
Vaccine ; 35(24): 3222-3231, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28483196

RESUMO

Human papillomavirus (HPV)-6 and HPV11 are the major etiological causes of condylomata acuminate. HPV neutralization by vaccine-elicited neutralizing antibodies can block viral infection and prevent subsequent disease. Currently, two commercially available HPV vaccines cover these two genotypes, expressed by Saccharomyces cerevisiae. Here we describe another HPV6/11 bivalent vaccine candidate derived from Escherichia coli. The soluble expression of N-terminally truncated L1 proteins was optimized to generate HPV6- and HPV11 L1-only virus-like particles (VLPs) as a scalable process. In a pilot scale, we used various biochemical, biophysical and immunochemical approaches to comprehensively characterize the scale and lot consistency of the vaccine candidate at 30L and 100L. Cryo-EM structure analysis showed that these VLPs form a T=7 icosahedral lattice, imitating the L1 capsid of the authentic HPV virion. This HPV6/11 bivalent vaccine confers a neutralization titer and antibody production profile in monkey that is comparable with the quadrivalent vaccine, Gardasil. This study demonstrates the robustness and scalability of a potential HPV6/11 bivalent vaccine using a prokaryotic system for vaccine production.


Assuntos
Escherichia coli/genética , Papillomavirus Humano 11/imunologia , Papillomavirus Humano 6/imunologia , Imunogenicidade da Vacina , Vacinas contra Papillomavirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18/administração & dosagem , Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18/imunologia , Papillomavirus Humano 11/genética , Papillomavirus Humano 6/genética , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/economia , Vacinas contra Papillomavirus/genética , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura
16.
mBio ; 8(5)2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951471

RESUMO

Persistent, high-risk human papillomavirus (HPV) infection is the primary cause of cervical cancer. Neutralizing antibodies elicited by L1-only virus-like particles (VLPs) can block HPV infection; however, the lack of high-resolution structures has limited our understanding of the mode of virus infection and the requirement for type specificity at the molecular level. Here, we describe two antibodies, A12A3 and 28F10, that specifically bind to and neutralize HPV58 and HPV59, respectively, through two distinct binding stoichiometries. We show that the epitopes of A12A3 are clustered in the DE loops of two adjacent HPV58 L1 monomers, whereas 28F10 recognizes the HPV59 FG loop of a single monomer. Via structure-based mutagenesis and analysis of antibody binding, we further identified the residues HPV58 D154, S168, and N170 and HPV59 M267, Q270, E273, Y276, K278, and R283, which play critical roles in virus infection. By substituting these strategic epitope residues into other HPV genotypes, we could then redirect the type-specific binding of the antibodies to these genotypes, thus highlighting the importance of these specific residues, HPV58 R161, S168, and N308 and HPV59 Q270, E273, and D281. Overall, our findings provide molecular insights into potential structural determinants of HPV required for infectivity and type specificity.IMPORTANCE High-risk human papillomaviruses (HPVs) are considered the major causative pathogens of cancers that affect epithelial mucosa, such as cervical cancer. However, because of the lack of high-resolution structural information on the sites of neutralization, we have yet to determine the precise mode of HPV infection and how different types of HPV cause infection. Our crystal structures in this study have uncovered discrete binding stoichiometries for two different antibodies. We show that one A12A3 Fab binds to the center of one HPV58 pentamer, whereas five 28F10 Fabs bind along the top fringe of one HPV59 pentamer. Furthermore, through targeted epitope analysis, we show that 6 to 7 discontinuous residues of the L1 major capsid protein of HPV are determinants, at least in part, for virus infection and type specificity. This knowledge will help us to unravel the process of HPV infection and can potentially be used to drive the development of therapeutics that target neutralization-sensitive sites.


Assuntos
Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/química , Epitopos/imunologia , Papillomaviridae/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/imunologia , Cristalografia por Raios X , Epitopos/química , Genótipo , Humanos , Mutagênese , Papillomaviridae/química , Papillomaviridae/genética , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Ligação Proteica
17.
Environ Sci Process Impacts ; 19(5): 720-726, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28406501

RESUMO

Underestimation of Escherichia coli in drinking water, an indicator microorganism of sanitary risk, may result in potential risks of waterborne diseases. However, the detection of disinfectant-injured or genetically modified (GM) E. coli has been largely overlooked so far. To evaluate the accuracy of culture-dependent enumeration with regard to disinfectant-injured and GM E. coli, chlorine- or ozone-injured wild-type (WT) and GM E. coli were prepared and characterized. Then, water samples contaminated with these E. coli strains were assayed by four widely used methods, including lactose tryptose broth-based multiple-tube fermentation (MTF), m-endo-based membrane filtration method (MFM), an enzyme substrate test (EST) known as Colilert, and Petrifilm-based testing slip method (TSM). It was found that MTF was the most effective method to detect disinfectant-injured WT E. coli (with 76.9% trials detecting all these bacteria), while this method could not effectively detect GM E. coli (with uninjured bacteria undetectable and a maximal detection rate of 21.5% for the injured). The EST was the only method which enabled considerable enumeration of uninjured GM E. coli, with a detection rate of over 93%. However, the detection rate declined to lower than 45.4% once the GM E. coli was injured by disinfectants. The MFM was invalid for both disinfectant-injured and GM E. coli. This is the first study to report the failure of these commonly used enumeration methods to simultaneously detect disinfectant-injured and GM E. coli. Thus, it highlights the urgent requirement for the development of a more accurate and versatile enumeration method which allows the detection of disinfectant-injured and GM E. coli on the assessment of microbial quality of drinking water.


Assuntos
Técnicas Bacteriológicas/métodos , Desinfetantes/toxicidade , Água Potável/microbiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Microbiologia da Água/normas , Cloro/toxicidade , Água Potável/normas , Enterobacteriaceae/genética , Enterobacteriaceae/crescimento & desenvolvimento , Fermentação , Filtração , Ozônio/toxicidade , Sensibilidade e Especificidade , Qualidade da Água
18.
Water Res ; 92: 188-98, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26854607

RESUMO

Extracellular antibiotic resistance genes (eARGs) that help in the transmission and spread of antibiotic-resistant bacteria are emerging environmental contaminants in water, and there is therefore a growing need to assess environmental levels and associated risks of eARGs. However, as they are present in low amounts, it is difficult to detect eARGs in water directly with PCR techniques. Here, we prepared a new type of nucleic acid adsorption particle (NAAP) with high capacity and developed an optimal adsorption-elution method to concentrate eARGs from large volumes of water. With this technique, we were able to achieve an eARG recovery rate of above 95% from 10 L of water samples. Moreover, combining this new method with quantitative real-time PCR (qPCR), the sensitivity of the eARG detection was 10(4) times that of single qPCR, with the detection limit lowered to 100 gene copies (GCs)/L. Our analyses showed that the eARG load, virus load and certain water characteristics such as pH, chemical oxygen demand (CODMn), and turbidity affected the eARGs recovery rate. However, high eARGs recovery rates always remained within the standard limits for natural surface water quality, while eARG levels in water were lower than the detection limits of single qPCR assays. The recovery rates were not affected by water temperature and heterotrophic plate counts (HPC). The eARGs whatever located in the plasmids or the short-length linear DNAs can be recovered from the water. Furthermore, the recovery rate was high even in the presence of high concentrations of plasmids in different natural water (Haihe river, well water, raw water for drinking water, Jinhe river, Tuanbo lake and the Yunqiao reservoir). By this technology, eARGs concentrations were found ranging from (2.70 ± 0.73) × 10(2) to (4.58 ± 0.47) × 10(4) GCs/L for the extracellular ampicillin resistance gene and (5.43 ± 0.41) × 10(2) to (2.14 ± 0.23) × 10(4) GCs/L for the extracellular gentamicin resistance gene in natural water for the first time, respectively. All these findings suggest that NAAPs have great potential for the monitoring of eARGs pollution in water.


Assuntos
Resistência Microbiana a Medicamentos/genética , Espaço Extracelular/química , Microbiologia da Água , Purificação da Água/métodos , Água/química , Adsorção , Análise da Demanda Biológica de Oxigênio , Precipitação Química , DNA/análise , Concentração de Íons de Hidrogênio , Ácidos Nucleicos/análise , Reprodutibilidade dos Testes , Reologia , Espectrometria por Raios X , Fatores de Tempo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
19.
Bing Du Xue Bao ; 32(5): 551-9, 2016 09.
Artigo em Chinês | MEDLINE | ID: mdl-30001576

RESUMO

The goals of this study were to establish a scalable production method to prepare human papillomavirus(HPV)16pseudovirus (PsV) using suspension-adapted HEK-293 FT cells and to improve the purification efficiency of HPV PsV. Furthermore, we aimed to solve the cryo-electron microscopy (cryo-EM) structure of HPV16 PsV. The suspension f HEK-293 FT cells were generated from adherent cells by a stepwise decrease in serum content and the addition of an anti-clumping agent during culturing. The resultant HEK-293 FT suspension cells were transfected with an L1/L2 expression vector and pN31-EGFP plasmid to generate HPV16 PsV in the Wave Bioreactor. Following cell lysis,HPV16 PsV was purified by sucrose density gradient and subsequent CsCl iso-density gradient ultra-centrifugation The final titer of HPV16 PsV was 8.2 × 10(5) TCID(50)/µL. Purified HPV16 PsV was comfirmed to as contain L1 and L2protein by western blotting, and the L1 concentration was determined to be 156.0 µg/mL by quantitative ELISA. Finally, a FEI Tecnai G2F30 electron microscope and AUTO3 DEM were used to solve the cryoEM structure of HPV16 PsV at a resolution of 14 Å.The structure shows that HPV16 PsV exists as a T=7dicosahedral lattice, with a diameter of 600 Å. These results will be beneficial for neutralization assays and for anti-sera for HPV vaccines, the high-resolution structure determination of HPV16 PsV, and the investigation of interactions between HPV L1 and L2.


Assuntos
Papillomavirus Humano 16/ultraestrutura , Infecções por Papillomavirus/virologia , Vírion/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/crescimento & desenvolvimento , Papillomavirus Humano 16/fisiologia , Humanos , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/fisiologia
20.
Nanotoxicology ; 10(8): 1051-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26946995

RESUMO

Nanomaterial pollution and the spread of antibiotic resistance genes (ARGs) are global public health and environmental concerns. Whether nanomaterials could aid the transfer of ARGs released from dead bacteria into live bacteria to cause spread of ARGs is still unknown. Here, we demonstrated that nano-Al2O3 could significantly promote plasmid-mediated ARGs transformation into Gram-negative Escherichia coli strains and into Gram-positive Staphylococcus aureus; however, bulk Al2O3 did not have this effect. Under suitable conditions, 7.4 × 10(6) transformants of E. coli and 2.9 × 10(5) transformants of S. aureus were obtained from 100 ng of a pBR322-based plasmid when bacteria were treated with nano-Al2O3. Nanoparticles concentrations, plasmid concentrations, bacterial concentrations, interaction time between the nanomaterial and bacterial cells and the vortexing time affected the transformation efficiency. We also explored the mechanisms underlying this phenomenon. Using fluorescence in situ hybridization and scanning electron microscopy, we found that nano-Al2O3 damaged the cell membrane to produce pores, through which plasmid could enter bacterial cells. Results from reactive oxygen species (ROS) assays, genome-wide expression microarray profiling and quantitative real-time polymerase chain reactions suggested that intracellular ROS damaged the cell membrane, and that an SOS response promoted plasmid transformation. Our results indicated the environmental and health risk resulting from nanomaterials helping sensitive bacteria to obtain antibiotic resistance.


Assuntos
Óxido de Alumínio/toxicidade , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Genes Bacterianos , Nanoestruturas/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Óxido de Alumínio/química , Escherichia coli/genética , Transferência Genética Horizontal , Hibridização in Situ Fluorescente , Nanoestruturas/química , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Staphylococcus aureus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa