Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500939

RESUMO

Eliminating clogging in capillary tube reactors is critical but challenging for enabling continuous-flow microfluidic synthesis of nanoparticles. Creating immiscible segments in a microfluidic flow is a promising approach to maintaining a continuous flow in the microfluidic channel because the segments with low surface energy do not adsorb onto the internal wall of the microchannel. Herein we report the spontaneous self-agglomeration of reduced graphene oxide (rGO) nanosheets in polyol flow, which arises because the reduction of graphene oxide (GO) nanosheets by hot polyol changes the nanosheets from hydrophilic to hydrophobic. The agglomerated rGO nanosheets form immiscible solid segments in the polyol flow, realizing the liquid-solid segmented flow to enable clogging aversion in continuous-flow microfluidic synthesis. Simultaneous reduction of precursor species in hot polyol deposits nanocrystals uniformly dispersed on the rGO nanosheets even without surfactant. Cuprous oxide (Cu2O) nanocubes of varying edge lengths and ultrafine metal nanoparticles of platinum (Pt) and palladium (Pd) dispersed on rGO nanosheets have been continuously synthesized using the liquid-solid segmented flow microfluidic method, shedding light on the promise of microfluidic reactors in synthesizing functional nanomaterials.

2.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458008

RESUMO

The development of new synthetic methods for methanol-tolerant catalysts with improved performance is of fundamental importance for the commercialization of fuel cells. Herein, we reported a facile displacement reaction-assisted synthesis of graphene-supported sub-nanometer Pt/Bi catalysts (Pt/Bi/rGO). Bismuth (0) nanoparticles produced by NH3BH3 reduction can be further dissolved into the ethylene glycol, implying Bi(0) has a strong interaction with the hydroxyl group. That is the key interaction between Bi(0) and the functional group on the rGO to form the ultra-small Bi/rGO catalyst. Furthermore, Pt clusters are obtained by the displacement between Bi(0) and HPtCl4 and are directly anchored to the rGO surface. The as-synthesized Pt/Bi/rGO catalyst exhibits high oxygen reduction mass activity and high tolerance to methanol poisoning. In the presence of 0.5 mol/L CH3OH, the initial potential and activity of ORR were almost unchanged, which demonstrated great potential in the application of direct methanol fuel cells.

3.
Nanoscale ; 12(23): 12647-12654, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32515460

RESUMO

Microfluidic synthesis has attracted extensive attention due to the ability for the multistep precise control of the synthesis parameters, continuous and reproducible preparation, and its ease of integration. However, its commercial application is still affected by its low production efficiency. In this case, we report a high-throughput continuous flow synthesis of highly dispersed PtFeCu/C nanocatalysts using a metal microchip setup with four parallel channels. The high flow rate and integrated channels enabled improving the throughput, whereby 1.33 g h-1 of catalysts could be achieved with the flow rate of 1200 mL h-1 under the experimental conditions. The as-prepared PtFeCu/C exhibited excellent performance, 1.94 times higher than Pt/C for methanol oxidation. More importantly, the yield of the PtFeCu/C nanocatalysts could be further increased through designing numerous parallel channels, which might provide a promising approach for large-scale commercialization of the catalysts. Such a high-throughput fabrication pathway is significant for the large-scale industrial production of nanomaterials.

4.
Talanta ; 202: 27-33, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171181

RESUMO

A novel sensor based on carbon supported BiSn alloy nanoparticles (BiSn@C) was prepared for the sensitive detection of Cd2+. The BiSn@C and Nafion modified glassy carbon electrode (GCE) exhibited improved electrochemical performance in Cd2+ detection, because of its large specific surface area, abundance of active sites, good electrical conductivity, and strong cation exchange ability. Under the optimum conditions, the fabricated sensor showed good linearity of its response from 0.01 µmol/L to 30 µmol/L for the detection of Cd2+ and a limit of detection (LOD) of 3 nmol/L, which is considerably lower than the limit specified for safe drinking water as guided by the World Health Organization. The Nafion/BiSn@C/GCE was successfully applied for determination for trace Cd2+ in river samples with satisfying recoveries using the standard addition method.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa