Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Hepatology ; 77(5): 1499-1511, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398929

RESUMO

BACKGROUND AND AIMS: Cholesterol ester (CE) biosynthesis and homeostasis play critical roles in many cancers, including HCC, but their exact mechanistic contributions to HCC disease development require further study. APPROACH AND RESULTS: Here, we report on a proposed role of tumor suppressor P53 in its repressing ubiquitin-specific peptidase 19 (USP19) and sterol O-acyltransferase (SOAT) 1, which maintains CE homeostasis. USP19 enhances cholesterol esterification and contributes to hepatocarcinogenesis (HCG) by deubiquitinating and stabilizing SOAT1. Loss of either SOAT1 or USP19 dramatically attenuates cholesterol esterification and HCG in P53-deficient mice fed with either a normal chow diet or a high-cholesterol, high-fat diet (HCHFD). SOAT1 inhibitor avasimibe has more inhibitory effect on HCC progression in HCHFD-maintained P53-deficient mice when compared to the inhibitors of de novo cholesterol synthesis. Consistent with our findings in the mouse model, the P53-USP19-SOAT1 signaling axis is also dysregulated in human HCCs. CONCLUSIONS: Collectively, our findings demonstrate that SOAT1 participates in HCG by increasing cholesterol esterification, thus indicating that SOAT1 is a potential biomarker and therapeutic target in P53-deficient HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Esterificação , Carcinoma Hepatocelular/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Hepáticas/genética , Colesterol , Endopeptidases
2.
Mikrochim Acta ; 191(2): 102, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231433

RESUMO

Mpox virus (MPXV) is a zoonotic DNA virus that caused human Mpox, leading to the 2022 global outbreak. MPXV infections can cause a number of clinical syndromes, which increases public health threats. Therefore, it is necessary to develop an effective and reliable method for infection prevention and control of epidemic. Here, a Cas12a-based direct detection assay for MPXV DNA is established without the need for amplification. By targeting the envelope protein gene (B6R) of MPXV, four CRISPR RNAs (crRNAs) are designed. When MPXV DNA is introduced, every Cas12a/crRNA complex can target a different site of the same MPXV gene. Concomitantly, the trans-cleavage activity of Cas12a is triggered to cleave the DNA reporter probes, releasing a fluorescence signal. Due to the application of multiple crRNAs, the amount of active Cas12a increases. Thus, more DNA reporter probes are cleaved. As a consequence, the detection signals are accumulated, which improves the limit of detection (LOD) and the detection speed. The LOD of the multiple crRNA system can be improved to ~ 0.16 pM, which is a decrease of the LOD by approximately ~ 27 times compared with the individual crRNA reactions. Furthermore, using multiple crRNAs increases the specificity of the assay. Given the outstanding performance, this assay has great potential for Mpox diagnosis.


Assuntos
Monkeypox virus , Mpox , Humanos , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , DNA Viral/genética , Vírus de DNA , RNA
3.
J Am Chem Soc ; 145(1): 334-344, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36575385

RESUMO

Phototheranostics has received sustained attention due to its great potential in revolutionizing conventional strategies of cancer treatment. However, trapped by the complexity, poor reproducibility, insufficient phototheranostic outputs, and inevitable damage to normal tissue of most multicomponent phototheranostic systems, its clinical translation has been severely hindered. Therefore, the exploration of "one for all" smart phototheranostic agents with versatile functionalities remains an appealing yet enormously challenging task. Herein, a reversibly pH-switchable and near-infrared second photosensitizer featuring aggregation-induced emission was tactfully designed by molecular engineering for precise tumor-targeting fluorescence imaging-guided phototherapy. Thanks to the strong intramolecular charge transfer, enhanced highly efficient intersystem crossing, and sufficient intramolecular motion, the developed agent DTTVBI was endowed with boosted type-I superoxide anion radical generation and excellent photothermal performance under 808 nm laser irradiation. More importantly, DTTVBI nanoparticles with high biocompatibility exhibit remarkably enhanced type-I photodynamic/photothermal therapy in the tumor region, thus offering significant antitumor effects both in vitro and in the patient-derived tumor xenograft model of colon cancer. This work sheds new light on the development of superior versatile phototheranostics for cancer therapy.


Assuntos
Neoplasias do Colo , Nanopartículas , Neoplasias , Animais , Humanos , Xenoenxertos , Reprodutibilidade dos Testes , Nanomedicina Teranóstica , Fototerapia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Modelos Animais de Doenças , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Concentração de Íons de Hidrogênio
4.
J Transl Med ; 21(1): 298, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138324

RESUMO

BACKGROUND: Although immunotherapy is effective in improving the clinical outcomes of patients with bladder cancer (BC), it is only effective in a small percentage of patients. Intercellular crosstalk in the tumor microenvironment strongly influences patient response to immunotherapy, while the crosstalk patterns of plasma cells (PCs) as endogenous antibody-producing cells remain unknown. Here, we aimed to explore the heterogeneity of PCs and their potential crosstalk patterns with BC tumor cells. METHODS: Crosstalk patterns between PCs and tumor cells were revealed by performing integrated bulk and single-cell RNA sequencing (RNA-seq) and spatial transcriptome data analysis. A risk model was constructed based on ligand/receptor to quantify crosstalk patterns by stepwise regression Cox analysis. RESULTS: Based on cell infiltration scores inferred from bulk RNA-seq data (n = 728), we found that high infiltration of PCs was associated with better overall survival (OS) and response to immunotherapy in BC. Further single-cell transcriptome analysis (n = 8; 41,894 filtered cells) identified two dominant types of PCs, IgG1 and IgA1 PCs. Signal transduction from tumor cells of specific states (stress-like and hypoxia-like tumor cells) to PCs, for example, via the LAMB3/CD44 and ANGPTL4/SDC1 ligand/receptor pairs, was validated by spatial transcriptome analysis and associated with poorer OS as well as nonresponse to immunotherapy. More importantly, a ligand/receptor pair-based risk model was constructed and showed excellent performance in predicting patient survival and immunotherapy response. CONCLUSIONS: PCs are an important component of the tumor microenvironment, and their crosstalk with tumor cells influences clinical outcomes and response to immunotherapies in BC patients.


Assuntos
Plasmócitos , Neoplasias da Bexiga Urinária , Humanos , Ligantes , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Transdução de Sinais , Imunoterapia , Microambiente Tumoral , Prognóstico
5.
Clin Chem Lab Med ; 61(12): 2216-2228, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37387637

RESUMO

OBJECTIVES: Non-small cell lung cancer (NSCLC) accounts for more than 80 % of all lung cancers, and its 5-year survival rate can be greatly improved by early diagnosis. However, early diagnosis remains elusive because of the lack of effective biomarkers. In this study, we aimed to develop an effective diagnostic model for NSCLC based on a combination of circulating biomarkers. METHODS: Tissue-deregulated long noncoding RNAs (lncRNAs) in NSCLC were identified in datasets retrieved from the Gene Expression Omnibus (GEO, n=727) and The Cancer Genome Atlas (TCGA, n=1,135) databases, and their differential expression was verified in paired local plasma and exosome samples from NSCLC patients. Subsequently, LASSO regression was used to screen for biomarkers in a large clinical population, and a logistic regression model was used to establish a multi-marker diagnostic model. The area under the receiver operating characteristic (ROC) curve (AUC), calibration plots, decision curve analysis (DCA), clinical impact curves, and integrated discrimination improvement (IDI) were used to evaluate the efficiency of the diagnostic model. RESULTS: Three lncRNAs-PGM5-AS1, SFTA1P, and CTA-384D8.35 were consistently expressed in online tissue datasets, plasma, and exosomes from local patients. LASSO regression identified nine variables (Plasma CTA-384D8.35, Plasma PGM5-AS1, Exosome CTA-384D8.35, Exosome PGM5-AS1, Exosome SFTA1P, Log10CEA, Log10CA125, SCC, and NSE) in clinical samples that were eventually included in the multi-marker diagnostic model. Logistic regression analysis revealed that Plasma CTA-384D8.35, exosome SFTA1P, Log10CEA, Exosome CTA-384D8.35, SCC, and NSE were independent risk factors for NSCLC (p<0.01), and their results were visualized using a nomogram to obtain personalized prediction outcomes. The constructed diagnostic model demonstrated good NSCLC prediction ability in both the training and validation sets (AUC=0.97). CONCLUSIONS: In summary, the constructed circulating lncRNA-based diagnostic model has good NSCLC prediction ability in clinical samples and provides a potential diagnostic tool for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Exossomos/genética , Biomarcadores Tumorais/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica
6.
Mol Cancer ; 21(1): 45, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148751

RESUMO

BACKGROUND: Dendritic cells (DCs) are central for the initiation and regulation of innate and adaptive immunity in the tumor microenvironment. As such, many kinds of DC-targeted vaccines have been developed to improve cancer immunotherapy in numerous clinical trials. Targeted delivery of antigens and adjuvants to DCs in vivo represents an important approach for the development of DC vaccines. However, nonspecific activation of systemic DCs and the preparation of optimal immunodominant tumor antigens still represent major challenges. METHODS: We loaded the immunogenic cell death (ICD) inducers human neutrophil elastase (ELANE) and Hiltonol (TLR3 agonist) into α-lactalbumin (α-LA)-engineered breast cancer-derived exosomes to form an in situ DC vaccine (HELA-Exos). HELA-Exos were identified by transmission electron microscopy, nanoscale flow cytometry, and Western blot analysis. The targeting, killing, and immune activation effects of HELA-Exos were evaluated in vitro. The tumor suppressor and immune-activating effects of HELA-Exos were explored in immunocompetent mice and patient-derived organoids. RESULTS: HELA-Exos possessed a profound ability to specifically induce ICD in breast cancer cells. Adequate exposure to tumor antigens and Hiltonol following HELA-Exo-induced ICD of cancer cells activated type one conventional DCs (cDC1s) in situ and cross-primed tumor-reactive CD8+ T cell responses, leading to potent tumor inhibition in a poorly immunogenic triple negative breast cancer (TNBC) mouse xenograft model and patient-derived tumor organoids. CONCLUSIONS: HELA-Exos exhibit potent antitumor activity in both a mouse model and human breast cancer organoids by promoting the activation of cDC1s in situ and thus improving the subsequent tumor-reactive CD8+ T cell responses. The strategy proposed here is promising for generating an in situ DC-primed vaccine and can be extended to various types of cancers. Scheme 1. Schematic illustration of HELA-Exos as an in situ DC-primed vaccine for breast cancer. (A) Allogenic breast cancer-derived exosomes isolated from MDA-MB-231 cells were genetically engineered to overexpress α-LA and simultaneously loaded with the ICD inducers ELANE and Hiltonol (TLR3 agonist) to generate HELA-Exos. (B) Mechanism by which HELA-Exos activate DCs in situ in a mouse xenograft model ofTNBC. HELA-Exos specifically homed to the TME and induced ICD in cancer cells, which resulted in the increased release of tumor antigens, Hiltonol, and DAMPs, as well as the uptake of dying tumor cells by cDC1s. The activated cDC1s then cross-primed tumor-reactive CD8+ T cell responses. (C) HELA-Exos activated DCs in situ in the breast cancer patient PBMC-autologous tumor organoid coculture system. ABBREVIATIONS: DCs: dendritic cells; α-LA: α-lactalbumin; HELA-Exos: Hiltonol-ELANE-α-LA-engineered exosomes; ICD: immunogenic cell death; ELANE: human neutrophil elastase; TLR3: Toll-like receptor 3; TNBC: triple-negative breast cancer; TME: tumor microenvironment; DAMPs: damage-associated molecular patterns; cDC1s: type 1 conventional dendritic cells; PBMCs: peripheral blood mononuclear cells.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Exossomos , Vacinas , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Células Dendríticas , Feminino , Humanos , Leucócitos Mononucleares , Camundongos , Microambiente Tumoral , Vacinas/metabolismo
7.
Expert Rev Mol Med ; 24: e6, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35086606

RESUMO

Bladder cancer is the most common malignant tumour of the urinary system that is characterised by significant intra-tumoural heterogeneity. While large-scale sequencing projects have provided a preliminary understanding of tumour heterogeneity, these findings are based on the average signals obtained from the pooled populations of diverse cells. Recent advances in single-cell sequencing (SCS) technologies have been critical in this regard, opening up new ways of understanding the nuanced tumour biology by identifying distinct cellular subpopulations, dissecting the tumour microenvironment, and characterizing cellular genomic mutations. By integrating these novel insights, SCS technologies are expected to make powerful and meaningful changes to the current diagnosis and treatment of bladder cancer through the identification and usage of novel biomarkers as well as targeted therapeutics. SCS can discriminate complex heterogeneity in a large population of tumour cells and determine the key molecular properties that influence clinical outcomes. Here, we review the advances in single-cell technologies and discuss their applications in cancer research and clinical practice, with a specific focus on bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Feminino , Humanos , Masculino , Mutação , Análise de Sequência , Microambiente Tumoral/genética , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia
8.
BMC Cancer ; 22(1): 264, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279104

RESUMO

BACKGROUND: With the improved knowledge of disease biology and the introduction of immune checkpoints, there has been significant progress in treating renal cell carcinoma (RCC) patients. Individual treatment will differ according to risk stratification. As the clinical course varies in RCC, it has developed different predictive models for assessing patient's individual risk. However, among other prognostic scores, no transparent preference model was given. MicroRNA as a putative marker shown to have prognostic relevance in RCC, molecular analysis may provide an innovative benefit in the prophetic prediction and individual risk assessment. Therefore, this study aimed to establish a prognostic-related microRNA risk score model of RCC and further explore the relationship between the model and the immune microenvironment, immune infiltration, and immune checkpoints. This practical model has the potential to guide individualized surveillance protocols, patient counseling, and individualized treatment decision for RCC patients and facilitate to find more immunotherapy targets. METHODS: Downloaded data of RCC from the TCGA database for difference analysis and divided it into a training set and validation set. Then the prognostic genes were screened out by Cox and Lasso regression analysis. Multivariate Cox regression analysis was used to establish a predictive model that divided patients into high-risk and low-risk groups. The ENCORI online website and the results of the RCC difference analysis were used to search for hub genes of miRNA. Estimate package and TIMER database were used to evaluate the relationship between risk score and tumor immune microenvironment (TME) and immune infiltration. Based on Kaplan-Meier survival analysis, search for immune checkpoints related to the prognosis of RCC. RESULTS: There were nine miRNAs in the established model, with a concordance index of 0.702 and an area under the ROC curve of 0.701. Nine miRNAs were strongly correlated with the prognosis (P < 0.01), and those with high expression levels had a poor prognosis. We found a common target gene PDGFRA of hsa-miR-6718, hsa-miR-1269b and hsa-miR-374c, and five genes related to ICGs (KIR2DL3, TNFRSF4, LAG3, CD70 and TNFRSF9). The immune/stromal score, immune infiltration, and immune checkpoint genes of RCC were closely related to its prognosis and were positively associated with a risk score. CONCLUSIONS: The established nine-miRNAs prognostic model has the potential to facilitate prognostic prediction. Moreover, this model was closely related to the immune microenvironment, immune infiltration, and immune checkpoint genes of RCC.


Assuntos
Carcinoma de Células Renais/mortalidade , Neoplasias Renais/mortalidade , Adulto , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes , Microambiente Tumoral
9.
Scand J Gastroenterol ; 57(2): 214-221, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34644216

RESUMO

BACKGROUND: The most frequent histologic subtype of colon cancer is colon adenocarcinoma (COAD). A major problem in the diagnosis and treatment of COAD is that there is lack of new biomarkers to indicate the early stage of COAD. Compared with normally differentiated cells, the glycolytic pathways of tumor cells are more active, thus making them more adaptable to the hypoxic environment of solid tumors, which is known as the Warburg effect. Therefore, establishing a diagnostic and prognostic model based on glycolysis-related genes may provide guidance for the precise treatment of colon cancer. METHODS: The Cancer Genome Atlas (TCGA) mRNA data were used to identify differentially expressed genes (DEGs). The glycolysis-related DEGs were identified using Gene Set Enrichment Analysis (GSEA) with HALLMARK gene sets. Combined with clinical data, we identified prognostic genes in glycolysis-related DEGs based on Cox regression analysis. Four glycolysis-related genes were identified and a predictive model was developed using univariate and multivariate Cox regression analysis. cBioPortal investigated the chromosomal variations of these genes. Following that, survival analysis and receiver operating characteristic (ROC) curve validation were carried out. The correlations between glycolysis-related gene signatures and molecular features and cancer subtypes were analyzed. RESULTS: We discovered five genes (SPAG4, P4HA1, STC2, ENO3, and GPC1) that are associated with COAD patients' prognosis. The risk score was more accurate in predicting prognosis when based on this gene signature in COAD patients. Furthermore, multivariate Cox regression analysis demonstrated that the glycolysis-related gene signature's predictive value was independent of clinical variables. CONCLUSION: We identified a glycolysis-related five-gene signature and developed a risk staging model potentially valuable for the clinical management of COAD patients. Our results suggest that prognostic markers based on glycolysis-related genes may be a reliable predictive tool for the prognosis of COAD patients.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Glicólise/genética , Humanos , Prognóstico , Análise de Sobrevida
10.
Eur J Immunol ; 50(9): 1350-1361, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32339264

RESUMO

Chronic HCV infection can lead to cirrhosis and is associated with increased mortality. Interleukin (IL)-10-producing B cells (B10 cells) are regulatory cells that suppress cellular immune responses. Here, we aimed to determine whether HCV induces B10 cells and assess the roles of the B10 cells during HCV infection. HCV-induced B10 cells were enriched in CD19hi and CD1dhi CD5+ cell populations. HCV predominantly triggered the TLR2-MyD88-NF-κB and AP-1 signaling pathways to drive IL-10 production by B cells. In a humanized murine model of persistent HCV infection, to neutralize IL-10 produced by B10 cells, mice were treated with pcCD19scFv-IL-10R, which contains the genes coding the anti-CD19 single-chain variable fragment (CD19scFv) and the extracellular domain of IL-10 receptor alpha chain (sIL-10Ra). This treatment resulted in significant reduction of B10 cells in spleen and liver, increase of cytotoxic CD8+ T-cell responses against HCV, and low viral loads in infected humanized mice. Our results indicate that targeting B10 cells via neutralization of IL-10 may offer a novel strategy to enhance anti-HCV immunotherapy.


Assuntos
Linfócitos B Reguladores/imunologia , Hepatite C Crônica/imunologia , Interleucina-10/antagonistas & inibidores , Interleucina-10/imunologia , Animais , Hepacivirus/imunologia , Humanos , Camundongos
11.
Small ; 17(49): e2104585, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34679230

RESUMO

Nanocancer medicine, such as photothermal therapy (PTT), as a promising way to solve cancer without side effects, faces a huge biological barrier during the circulation of nanoparticles in the body, including nanobiological interactions in the blood, isolation of nanoparticles in the macrophage system, tumor spillover effect, and especially uneven intratumoral distribution of nanoparticles, which cast a shadow over the hope. To address the problem of intratumoral distribution, an effective photothermal agent is introduced by packaging the black phosphorus quantum dots (BPQDs) into exosome vector (EXO) through electroporation method. With the improving and proper stability for better therapy, the resulting BPQDs@EXO nanospheres (BEs) exhibit good biocompatibility, long circulation time, and excellent tumor targeting ability, hence impressive PTT efficiency evidenced by highly efficient tumor ablation in vivo. Importantly, great permeability on organoids contributed by EXO appears with BEs, which strongly promotes the efficient killing ability. These BP-based nanospheres must promise high clinical potential due to the high PTT efficiency and minimal side effects.


Assuntos
Exossomos , Nanopartículas , Pontos Quânticos , Fósforo , Fototerapia , Terapia Fototérmica
12.
PLoS Pathog ; 15(8): e1008002, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31404116

RESUMO

The galectin 3 binding protein (LGALS3BP, also known as 90K) is a ubiquitous multifunctional secreted glycoprotein originally identified in cancer progression. It remains unclear how 90K functions in innate immunity during viral infections. In this study, we found that viral infections resulted in elevated levels of 90K. Further studies demonstrated that 90K expression suppressed virus replication by inducing IFN and pro-inflammatory cytokine production. Upon investigating the mechanisms behind this event, we found that 90K functions as a scaffold/adaptor protein to interact with TRAF6, TRAF3, TAK1 and TBK1. Furthermore, 90K enhanced TRAF6 and TRAF3 ubiquitination and served as a specific ubiquitination substrate of TRAF6, leading to transcription factor NF-κB, IRF3 and IRF7 translocation from the cytoplasm to the nucleus. Conclusions: 90K is a virus-induced protein capable of binding with the TRAF6 and TRAF3 complex, leading to IFN and pro-inflammatory production.


Assuntos
Antígenos de Neoplasias/fisiologia , Biomarcadores Tumorais/fisiologia , Glicoproteínas/fisiologia , Fator 3 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Viroses/imunologia , Replicação Viral , Vírus/imunologia , Animais , Células Cultivadas , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Viroses/metabolismo , Viroses/virologia
13.
Hepatology ; 72(2): 518-534, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31758709

RESUMO

BACKGROUND AND AIMS: Major vault protein (MVP) is up-regulated during infections with hepatitis B virus (HBV) and hepatitis C virus (HCV). Here, we found that MVP deficiency inhibited hepatocellular carcinoma (HCC) development induced by diethylnitrosamine, hepatitis B X protein, and HCV core. APPROACH AND RESULTS: Forced MVP expression was sufficient to induce HCC in mice. Mechanistic studies demonstrate that the ubiquitin ligase human double minute 2 (HDM2) forms mutual exclusive complexes either with interferon regulatory factor 2 (IRF2) or with p53. In the presence of MVP, HDM2 is liberated from IRF2, leading to the ubiquitination of the tumor suppressor p53. Mouse xenograft models showed that HBV and HCV promote carcinogenesis through MVP induction, resulting in a loss of p53 mediated by HDM2. Analyses of clinical samples from chronic hepatitis B, liver cirrhosis, and HCC revealed that MVP up-regulation correlates with several hallmarks of malignancy and associates with poor overall survival. CONCLUSIONS: Taken together, through the sequestration of IRF2, MVP promotes an HDM2-dependent loss of p53 that promotes HCC development.


Assuntos
Carcinoma Hepatocelular/etiologia , Fator Regulador 2 de Interferon/fisiologia , Neoplasias Hepáticas/etiologia , Proteína Supressora de Tumor p53/fisiologia , Partículas de Ribonucleoproteínas em Forma de Abóbada/fisiologia , Animais , Humanos , Camundongos
14.
Mol Cell Biochem ; 476(3): 1421-1438, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33389499

RESUMO

SARS-CoV-2 is one of the beta-coronaviruses with the spike protein. It invades host cells by binding to angiotensin converting enzyme 2 (ACE2). This newly discovered virus can result in excessive inflammation and immune pathological damage, as shown by a decreased number of peripheral lymphocytes, increased levels of cytokines, and damages of lung, heart, liver, kidney, and other organs. Effective therapeutic modalities such as new antiviral drugs and vaccines against this emerging virus need to be thoroughly studied and developed. However, so far the only recognized but mild progress in this area is the screening of old drugs for new uses. Therefore, rapid and accurate laboratory SARS-CoV-2 testing approaches are the important basis of identification and blockage of COVID-19 transmission. For COVID-19 patients with different clinical classifications (mild, common, severe, and critically severe), dynamic monitoring of functional indicators of susceptible and vital organs is an important strategy for evaluating therapeutic efficacy and prognosis. In this review, we summarized SARS-CoV-2 laboratory diagnostic schemes, pathophysiological indices of tissues and organs of COVID-19 patients, and laboratory diagnostic strategies for distinct disease stages. Further, we discussed the importance of hierarchical management and dynamic observation in SARS-CoV-2 laboratory diagnostics. We then summed up the advance in SARS-CoV-2 testing technology and described the prospect of intelligent medicine in the prevention of infectious disease outbreaks.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2 , Humanos
15.
Analyst ; 146(16): 5074-5080, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34318784

RESUMO

Diabetes mellitus has received much attention because its complications include liver, kidney, eye, heart and cerebrovascular diseases. Thus, it would be highly significant to develop a rapid and efficient method for glucose detection in biological samples. In this work, a point-of-care testing (POCT) method of glucose detection was proposed using a standard colorimetric card for semi-quantitative determination patterns. In the prepared fluorescence color card for glucose, a good linear relationship was acquired by plotting the ratio of the grayscale value (I/I0) versus the logarithm of glucose concentration within 100.0 to 1000.0 µmol L-1, and the LOD of glucose detection was 1.1 µmol L-1. A large number of actual samples (30 serum and 7 urine) were analyzed and the results demonstrated that this method had good potential to be applied in the primary screening of diabetic patients. In addition, this method is universal and can be applied in the simultaneous detection of multiple small molecules. It provides a new strategy for the primary screening of multiple diseases simultaneously, which presents excellent application potential.


Assuntos
Diabetes Mellitus , Testes Imediatos , Colorimetria , Diabetes Mellitus/diagnóstico , Glucose , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
16.
Analyst ; 146(3): 949-955, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33245089

RESUMO

High concentration of uric acid is usually related to cardiovascular and cerebrovascular diseases. Developing a simple method for the rapid and efficient detection of uric acid has a great significance in clinical diagnosis. In this work, alginate hydrogel microspheres embedded with CdZnTeS QDs and urate oxidase (Alg@QDs-UOx MSs) were prepared for the first time, and further used for point-of-care testing (POCT) of patients with a high concentration of uric acid. This strategy is mainly based on visual detection of H2O2, the product of uric acid after an enzymatic reaction. The proposed sensor (Alg@QDs-UOx MSs) has several advantages. First, it can reduce the interference of the proteins to the fluorescence of QDs. Second, Alg@QDs-UOx MSs help improve the stability of the CdZnTeS QDs as well as the activity of urate oxidase during storage. Third, it is easy to use, has fast response speed, and is of low cost. Therefore, the proposed sensor shows good application prospects. Simply through the built-in camera of a smartphone, we can visualize the urine samples from patients with a high concentration of uric acid within 10 minutes, and the accuracy rates were 100%. In the range of 100.0 µM to 900.0 µM, the I/I0 values and uric acid concentrations are in a great linear relationship (R2 = 0.9973), indicating that this method can be employed for quantitative analysis of uric acid in human urine (<10 mM). The limit of detection (LOD) is 20.3 µM.


Assuntos
Urato Oxidase , Ácido Úrico , Alginatos , Cádmio , Humanos , Hidrogéis , Peróxido de Hidrogênio , Microesferas , Testes Imediatos , Telúrio , Zinco
17.
Analyst ; 146(15): 4775-4780, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34231558

RESUMO

Cholesterol is an essential compound for human health, and a high or low concentration of cholesterol is closely related to various diseases. Thus, developing a simple method for POCT of cholesterol has great significance in clinical diagnosis. In this work, alginate (Alg) hydrogels with glow-type chemiluminescence (CL) were prepared and applied for rapid and quantitative cholesterol detection via a smartphone. The glow-type CL hydrogels (HRP/COD/luminol/Alg hydrogels) contained luminol as a chemiluminescent reagent, horseradish peroxidase (HRP) and cholesterol oxidase (COD) for enzymatic cascade reactions. The HRP/COD/luminol/Alg hydrogels exhibited outstanding stability, which effectively avoided the enzyme inactivation during long-term storage. Furthermore, the HRP/COD/luminol/Alg hydrogels exhibited longer and more stable glow-type CL. With the help of COD catalytic specificity for cholesterol and bi-enzymatic cascade reactions, the glow-type CL hydrogels realized the specific and sensitive detection of cholesterol. The smartphone was used as a detector instead of a special large instrument for responding to the glow-type CL emission, and a LOD of 7.2 µM was obtained. Therefore, the proposed sensor expands the application of the glow-type CL in POCT and provides an alternative way for cholesterol detection in clinical diagnosis.


Assuntos
Colesterol/análise , Hidrogéis , Testes Imediatos , Peroxidase do Rábano Silvestre , Humanos , Medições Luminescentes , Luminol
18.
IUBMB Life ; 72(4): 624-631, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31769934

RESUMO

Viral replication and related protein expression inside the host cells, and host antiviral immune responses can lead to the occurrence of diverse diseases. With the outbreak of viral infection, a large number of newly diagnosed and died patients infected with various viruses are still reported every year. Viral infection has already been one of the major global public health issues and lead to huge economic and social burdens. Studying of viral pathogenesis is a very important way to find methods for prevention, diagnosis, and cure of viral infection; more evidence has confirmed that major vault protein (MVP) is closely associated with viral infection and pathogenesis, and this review is intended to provide a broad relationship between viruses and MVP to stimulate the interest of related researchers.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Partículas de Ribonucleoproteínas em Forma de Abóbada/fisiologia , Viroses/virologia , Antivirais/farmacologia , Cistatina B/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Hepatite E/tratamento farmacológico , Hepatite E/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/virologia , Interferon Tipo I/metabolismo , Triterpenos/farmacologia , Replicação Viral
19.
Small ; 15(11): e1805516, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30706645

RESUMO

Virus detection and analysis are of critical importance in biological fields and medicine. Surface-enhanced Raman scattering (SERS) has shown great promise in small molecule and even single molecule detection, and can provide fingerprint signals of molecules. Despite the powerful detection capabilities of SERS, the size discrepancy between the SERS "hot spots" (generally, <10 nm) and viruses (usually, sub-100 nm) yields poor detection reliability of viruses. Inspired by the concept of molecular imprinting, a volume-enhanced Raman scattering (VERS) substrate composed of hollow nanocones at the bottom of microbowls (HNCMB) is developed. The hollow nanocones of the resulting VERS substrates serve a twofold purpose: 1) extending the region of Raman signal enhancement from the nanocone surface (e.g., surface "hot spots") to the hollow area within the cone (e.g., volume "hot spots")-a novel method of Raman signal enhancement, and 2) directing analyte such as viruses of a wide range of sizes to those VERS "hot spots" while simultaneously increasing the surface area contributing to SERS. Using HNCMB VERS substrates, greatly improved Raman signals of single viruses are demonstrated, an achievement with important implications in disease diagnostics and monitoring, biomedical fields, as well as in clinical treatment.


Assuntos
Análise Espectral Raman/métodos , Vírus/isolamento & purificação , Campos Eletromagnéticos , Ouro/química , Nanopartículas/química , Fatores de Tempo
20.
Anal Chem ; 90(24): 14402-14411, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30350954

RESUMO

Tumor exosomes that inherit molecular markers from their parent cells are emerging as cellular "surrogates" in cancer diagnostics. Molecular profiling and detection of exosomes offer a noninvasive access to the state of cancer progression, yet are still technically challenging. Here we report an exosome-oriented, aptamer nanoprobe-based profiling (ExoAPP) assay to phenotype surface proteins and quantify cancerous exosomes in a facile mix-and-detect format. Our ExoAPP interfaces graphene oxide (GO) with target-responsive aptamers to profile exosomal markers across five cell types by complementing with enzyme-assisted exosome recycling, revealing a heterogeneous pattern.This assay achieves a detection limit down to 1.6 × 105 particles/mL, lowered by several orders of magnitude over other homogeneous protocols. Such a sensitive ExoAPP assay allows for monitoring epithelial-mesenchymal transition through heterogeneous exosomes without involving cellular internalization that often occurs in GO-based cargo delivery. Using ExoAPP to analyze blood samples from prostate cancer patients, we find that target exosome can be identified by surface PSMA, suggesting their potential in clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Exossomos/metabolismo , Proteínas de Membrana/metabolismo , Nanoestruturas/química , Linhagem Celular Tumoral , Grafite/química , Humanos , Limite de Detecção , Modelos Moleculares , Conformação Molecular , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa