Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Am Chem Soc ; 146(19): 13183-13190, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695449

RESUMO

Emerging ion transport dynamics with memory effects at nanoscale solution-substrate interfaces offers a unique opportunity to overcome the bottlenecks in traditional computational architectures, trade-offs in selectivity and throughput in separation, and electrochemical energy conversions. Negative differential resistance (NDR), a decrease in conductance with increasing potential, constitutes a new function from the perspective of time-dependent instead of steady-state nanoscale electrokinetic ion transport but remains unexplored in ionotronics to develop higher-order complexity and advanced capabilities. Herein, NDR is introduced in hysteretic and rectified ion transport through single conical nanopipettes (NPs) as ionic memristors. Deterministic and chaotic behaviors are controlled via an electric field as the sole stimulus. The NDR arises fundamentally from the availability and redistribution of the ionic charges during the hysteretic and rectified transport at asymmetric nanointerfaces. The elucidated mechanism is generalizable, and the drastically simplified operations enable tunable state-switching dynamics with higher-order complexity besides the first-order synaptic functions in multiple excitatory and inhibitory states.

2.
Small ; : e2310175, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38402424

RESUMO

Van der Waals semiconductors (vdWS) offer superior mechanical and electrical properties and are promising for flexible microelectronics when combined with polymer substrates. However, the self-passivated vdWS surfaces and their weak adhesion to polymers tend to cause interfacial sliding and wrinkling, and thus, are still challenging the reliability of vdWS-based flexible devices. Here, an effective covalent vdWS-polymer lamination method with high stretch tolerance and excellent electronic performance is reported. Using molybdenum disulfide (MoS2 )and polydimethylsiloxane (PDMS) as a case study, gold-chalcogen bonding and mercapto silane bridges are leveraged. The resulting composite structures exhibit more uniform and stronger interfacial adhesion. This enhanced coupling also enables the observation of a theoretically predicted tension-induced band structure transition in MoS2 . Moreover, no obvious degradation in the devices' structural and electrical properties is identified after numerous mechanical cycle tests. This high-quality lamination enhances the reliability of vdWS-based flexible microelectronics, accelerating their practical applications in biomedical research and consumer electronics.

3.
Anal Chem ; 95(25): 9462-9470, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243709

RESUMO

Lack of controls and understanding in nucleation, which proceeds crystal growth and other phase transitions, has been a bottleneck challenge in chemistry, materials, biology, and other fields. The exemplary needs for better methods for biomacromolecule crystallization include (1) synthesizing crystals for high-resolution structure determinations in fundamental research and (2) tuning the crystal habit and thus the corresponding properties in materials and pharmaceutical applications. Herein, a deterministic method is established capable of sustaining the nucleation and growth of a single crystal using the protein lysozyme as a prototype. The supersaturation is localized at the interface between a sample and a precipitant solution, spatially confined by the tip of a single nanopipette. The exchange of matter between the two solutions determines the supersaturation, which is controlled by electrokinetic ion transport driven by an external potential waveform. Nucleation and subsequent crystal growth disrupt the ionic current limited by the nanotip and are detected. The nucleation and growth of individual single crystals are measured in real time. Electroanalytical and optical signatures are elucidated as feedbacks with which active controls in crystal quality and method consistency are achieved: five out of five crystals diffract at a true atomic resolution of up to 1.2 Å. As controls, those synthesized under less optimized conditions diffract poorly. The crystal habits during the growth process are tuned successfully by adjusting the flux. The universal mechanism of nano-transport kinetics, together with the correlations of the diffraction quality and crystal habit with the crystallization control parameters, lay the foundation for the generalization to other materials systems.


Assuntos
Proteínas , Proteínas/química , Cristalização/métodos , Transição de Fase , Cinética
4.
Anal Chem ; 94(34): 11760-11766, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35973062

RESUMO

A multi-parameter calibration and analysis strategy has been developed based on the kinetics of charge transfer reactions. Absolute and ratiometric electrochemiluminescence signals are elucidated from single measurements for the detection of hydroxyzine and cetirizine as prototype drugs which greatly enhance the near-infrared electrochemiluminescence from atomically precise Au22 nanoclusters stabilized with lipoic acid ligands on ITO electrodes. The signal-on sensing mechanism eliminates the need for recognition elements and highly excess co-reactants in conventional electrochemiluminescence practice. The rates of sequential charge transfer reactions render specificity in electrochemiluminescence intensity and kinetics toward the target molecular/electronic structures and are conveniently controlled/optimized by operation parameters. Signal kinetic profiles, in stark contrast to steady-state or single-point recordings, not only improve the signal/noise ratio but also offer greater resolving power to differentiate analogue species and nonspecific interference. The fundamental kinetics-based ratiometric concept/strategy is not limited to a specific luminophore or a co-reactant and is thus generalizable. The case studies successfully detect and discriminate drug compounds at sub-nanomolar physiological ranges, with efficacy validated using synthetic urine toward point-of-care applications in therapeutic/abuse drug monitoring.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Eletroquímicas , Ouro/química , Limite de Detecção , Medições Luminescentes , Nanopartículas Metálicas/química , Piperazina
5.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4765-4773, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581087

RESUMO

In this study, data of amino acids of Cordyceps samples from Qinghai and Tibet was analyzed with self-organizing map neural network. A model of XY-Fused network was established with the content of 8 major amino acids and total amino acids for the identification of geographical origins of Cordyceps from Qinghai and Tibet. It had the prediction accuracy of 83.3% for the test set. In addition, data mining indicated that methionine was a special kind of amino acid in Cordyceps which could serve as a marker to identify its geographical origins. On this basis, the content ratio of methionine to total amino acids was proposed to be a quantifiable indicator to distinguish Cordyceps from Qinghai and Tibet.


Assuntos
Cordyceps , Aminoácidos , Cordyceps/genética , Geografia , Redes Neurais de Computação , Tibet
6.
J Am Chem Soc ; 141(24): 9603-9609, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31184150

RESUMO

Near infrared (near-IR) electrogenerated chemiluminescence (ECL) from rod-shape bimetallic Au12Ag13 nanoclusters is reported. With ECL standard tris(bipyridine)ruthenium(II) complex (Ru(bpy)3) as reference, the self-annihilation ECL of the Au12Ag13 nanoclusters is about 10 times higher. The coreactant ECL of Au12Ag13 is about 400 times stronger than that of Ru(bpy)3 with 1 mM tripropylamine as coreactants. Voltammetric analysis reveals both oxidative and reductive ECLs under scanning electrode potentials. Transient ECL signals (tens of milliseconds) and decay profiles are captured by potential step experiments. An extremely strong and transient self-annihilation ECL is detected by activating LUMO and HOMO states sequentially via electrode reactions. The ECL generation pathways and mechanism are proposed based on the key anodic and cathodic activities arising from the energetics of this unique atomic-precision bimetallic nanocluster. Successes in the generation of the unprecedented strong near-IR ECL strongly support our prediction and choice of this nanocluster based on its record-high 40% quantum efficiency of near-IR photoluminescence. Correlation of the properties to the atomic/electronic structures has been a long-pursued goal particularly in the fast growing atomic-precision nanoclusters field. The mechanistic insights provided in this fundamental study could guide the design and syntheses of other nanoclusters or materials in general to achieve improved properties and further affirm the structure-function correlations. The high ECL signal in the less interfered near-infrared spectrum window offers combined merits of high-signal-low-noise/interference or high contrast for broad analytical sensing and immunoassays and other relevant applications.

7.
Regul Toxicol Pharmacol ; 95: 52-65, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29518484

RESUMO

Skin sensitization test data are required or considered by chemical regulation authorities around the world. These data are used to develop product hazard labeling for the protection of consumers or workers and to assess risks from exposure to skin-sensitizing chemicals. To identify opportunities for regulatory uses of non-animal replacements for skin sensitization tests, the needs and uses for skin sensitization test data must first be clarified. Thus, we reviewed skin sensitization testing requirements for seven countries or regions that are represented in the International Cooperation on Alternative Test Methods (ICATM). We noted the type of skin sensitization data required for each chemical sector and whether these data were used in a hazard classification, potency classification, or risk assessment context; the preferred tests; and whether alternative non-animal tests were acceptable. An understanding of national and regional regulatory requirements for skin sensitization testing will inform the development of ICATM's international strategy for the acceptance and implementation of non-animal alternatives to assess the health hazards and risks associated with potential skin sensitizers.


Assuntos
Alternativas aos Testes com Animais , Haptenos/toxicidade , Testes de Toxicidade/métodos , Animais , Dermatite Alérgica de Contato , Regulamentação Governamental , Humanos , Internacionalidade
8.
Anal Chem ; 89(21): 11811-11817, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28975786

RESUMO

Better understanding in the dynamics of ion transport through nanopores or nanochannels is important for sensing, nucleic acid sequencing and energy technology. In this paper, the intriguing nonzero cross point, resolved from the pinched hysteresis current-potential (i-V) curves in conical nanopore electrokinetic measurements, is quantitatively correlated to the surface and geometric properties by simulation studies. The analytical descriptions of the conductance and potential at the cross point are developed: the cross-point conductance includes both the surface and volumetric conductance; the cross-point potential represent the overall/averaged surface potential difference across the nanopore. The impacts by individual parameter such as pore radius, half cone angle, and surface charges are systematically studied in the simulation that would be convoluted and challenging in experiments. The elucidated correlation is supported by and offer predictive guidance for experimental studies. The results also offer more quantitative and systematic insights in the physical origins of the concentration polarization dynamics in addition to ionic current rectification inside conical nanopores and other asymmetric nanostructures. Overall, the cross point serves as a simple yet informative analytical parameter to analyze the electrokinetic transport through broadly defined nanopore-type devices.

9.
Angew Chem Int Ed Engl ; 56(51): 16257-16261, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29098757

RESUMO

The transition from molecular to plasmonic behaviour in metal nanoparticles with increasing size remains a central question in nanoscience. We report that the giant 246-gold-atom nanocluster (2.2 nm in gold core diameter) protected by 80 thiolate ligands is surprisingly non-metallic based on UV/Vis and femtosecond transient absorption spectroscopy as well as electrochemical measurements. Specifically, the Au246 nanocluster exhibits multiple excitonic peaks in transient absorption spectra and electron dynamics independent of the pump power, which are in contrast to the behaviour of metallic gold nanoparticles. Moreover, a prominent oscillatory feature with frequency of 0.5 THz can be observed in almost all the probe wavelengths. The phase and amplitude analysis of the oscillation suggests that it arises from the wavepacket motion on the ground state potential energy surface, which also indicates the presence of a small band-gap and thus non-metallic or molecular-like behaviour.

10.
J Am Chem Soc ; 138(20): 6380-3, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27172252

RESUMO

Strong electrogenerated chemiluminescence (ECL) is detected from dithiolate Au nanoclusters (AuNCs) in aqueous solution under ambient conditions. A novel mechanism to drastically enhance the ECL is established by covalent attachment of coreactants N,N-diethylethylenediamine (DEDA) onto lipoic acid stabilized Au (Au-LA) clusters with matching redox activities. The materials design reduces the complication of mass transport between the reactants during the lifetime of radical intermediates involved in conventional ECL generation pathway. The intracluster reactions are highly advantageous for applications by eliminating additional and high excess coreactants otherwise needed. The enhanced ECL efficiency also benefits uniquely from the multiple energy states per Au cluster and multiple DEDA ligands in the monolayer. Potential step and sweeping experiments reveal an onset potential of 0.78 V for oxidative-reduction ECL generation. Multifolds higher efficiency is found for the Au clusters alone in reference to the standard Rubpy with high excess TPrA. The ECL in near-IR region (beyond 700 nm) is highly advantageous with drastically reduced interference signals over visible ones. The features of ECL intensity responsive to electrode potential and solution pH under ambient conditions make Au-LA-DEDA clusters promising ECL reagents for broad applications. The strategy to attach coreactants on Au clusters is generalizable for other nanomaterials.


Assuntos
Técnicas Eletroquímicas/métodos , Ouro/química , Luminescência , Nanopartículas Metálicas/química , Ácido Tióctico/química , Solubilidade , Espectroscopia de Luz Próxima ao Infravermelho , Água/química
11.
Anal Chem ; 87(16): 8173-80, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26241158

RESUMO

Better detections of circulating microRNAs (miRNAs) as disease biomarkers could advance diseases diagnosis and treatment. Current analysis methods or sensors for research and applications are challenged by the low concentrations and wide dynamic range (from aM to nM) of miRNAs in a physiological sample. Here, we report a one-step label-free electrochemical sensor comprising a triple-stem DNA-redox probe structure on a gold microelectrode. A new signal amplification mechanism without the need of a redox enzyme is introduced. The novel strategy overcomes the fundamental limitations of microelectrode DNA sensors that fail to generate detectable current, which is primarily due to the limited amount of redox probes in response to the target analyte binding. By employing a reductant, tris(2-carboxyethyl) phosphine hydrochloride (TCEP) in the detection buffer solution, each redox molecule on the detection probe is cyclically oxidized at the electrode and reduced by the reductant; thus, the signal is amplified in situ during the detection period. The combined merits in the diagnosis power of cyclic voltammetry and the high sensitivity of pulse voltammetry enable parallel analysis for method validation and optimization previously inaccessible. As such, the detection limit of miRNA-122 was 0.1 fM via direct readout, with a wide detection range from sub fM to nM. The detection time is within minutes, which is a significant improvement over other macroscopic sensors and other relevant techniques such as quantitative reverse transcription polymerase chain reaction (qRT-PCR). The high selectivity of the developed sensors is demonstrated by the discrimination against two most similar family sequences: miR-122-3p present in serum and 2-mismatch synthetic RNA sequence. Interference such as nonspecific adsorption, a common concern in sensor development, is reduced to a negligible amount by adopting a multistep surface modification strategy. Importantly, unlike qRT-PCR, the microelectrochemical sensor offers direct absolute quantitative readout that is amenable to clinical and in-home point-of-care (POC) applications. The sensor design is flexible, capable of being tailored for detection of different miRNAs of interest. Combined with the fact that the sensor was constructed at microscale, the method can be generalized for high throughput detection of miRNA signatures as disease biomarkers.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , MicroRNAs/análise , MicroRNAs/química , Microeletrodos , Processamento de Sinais Assistido por Computador
12.
Phys Chem Chem Phys ; 17(29): 19342-9, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26138500

RESUMO

Electron transfer activities of metal clusters are fundamentally significant and have promising potential in catalysis, charge or energy storage, sensing, biomedicine and other applications. Strong resonance coupling between the metal core energy states and the ligand molecular orbitals has not been established experimentally, albeit exciting progress has been achieved in the composition and structure determination of these types of nanomaterials recently. In this report, the coupling between core and ligand energy states is demonstrated by the rich electron transfer activities of Au130 clusters. Quantized electron transfers to the core and multi-electron transfers involving the durene-dithiolate ligands were observed at lower and higher potentials, respectively, in voltammetric studies. After a facile multi-electron oxidation from +1.34 to +1.40 V, several reversal reduction processes at more negative potentials, i.e. +0.91 V, +0.18 V and -0.34 V, were observed in an electrochemically irreversible fashion or with sluggish kinetics. The number of electrons and the shifts of the respective reduction potentials in the reversal process were attributed to the electronic coupling or energy relaxation processes. The electron transfer activities and subsequent relaxation processes are drastically reduced at lower temperatures. The time- and temperature-dependent relaxation, involving multiple energy states in the reversal reduction processes upon the oxidation of ligands, reveals the coupling between core and ligand energy states.

13.
J Sep Sci ; 38(6): 925-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25641849

RESUMO

The detection, confirmation, and quantification of multiple illegal adulterants in health foods and herbal medicines by using a single analytical method are a challenge. This paper reports on a new strategy to meet this challenge by employing high-performance liquid chromatography coupled with high-resolution mass spectrometry and a mass spectral tree similarity filter technique. This analytical method can rapidly collect high-resolution, high-accuracy, optionally multistage mass data for compounds in samples. After a preliminary screening by retention time and high-resolution mass spectral data, known illegal adulterants can be detected. The mass spectral tree similarity filter technique has been applied to rapidly confirm these adulterants and simultaneously discover unknown ones. By using full-scan mass spectra as stem and data-dependent subsequent stage mass spectra to form branches, mass spectrometry data from detected compounds are converted into mass spectral trees. The known or unknown illegal adulterants in the samples are confirmed or discovered based on the similarity between their mass spectral trees and those of the references in a library, and they are finally quantified against standard curves. This new strategy has been tested by using 50 samples, and the illegal adulterants were rapidly and effectively detected, confirmed and quantified.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Alimento Funcional/análise , Espectrometria de Massas/métodos , Extratos Vegetais/análise , Plantas Medicinais/química , Contaminação de Alimentos/legislação & jurisprudência , Medicina Herbária
14.
Molecules ; 19(2): 1786-94, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24500008

RESUMO

A pair of new phenolic acid stereoisomers, (R)-norsalvianolic acid L (1) and (S)-norsalvianolic acid L (2), was isolated from the Danshen Injection (lyophilized powder). The structural elucidation and stereochemistry determination were achieved by spectroscopic and chemical methods including 1D, 2D NMR (1H-1H COSY, HSQC and HMBC) and circular dichroism experiments. Their antioxidant activities were assessed by the DPPH· and ABTS·+ scavenging methods in vitro with microplate assay. The IC50 values of 1 were 6.9 and 9.7 µM respectively, which was close to the control salvianolic acid B (7.8 and 7.1 µM respectively), while the IC50 values of isomer 2 were 27.1 and 25.3 µM, respectively.


Assuntos
Antioxidantes/química , Medicamentos de Ervas Chinesas/química , Hidroxibenzoatos/química , Salvia miltiorrhiza/química , Alcenos/química , Antioxidantes/isolamento & purificação , Sequestradores de Radicais Livres/química , Fenóis/química , Polifenóis/química , Estereoisomerismo
15.
Langmuir ; 29(27): 8743-52, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23799796

RESUMO

Electrostatic interactions of mobile charges in solution with the fixed surface charges are known to strongly affect stochastic sensing and electrochemical energy conversion processes at nanodevices or devices with nanostructured interfaces. The key parameter to describe this interaction, surface charge density (SCD), is not directly accessible at nanometer scale and often extrapolated from ensemble values. In this report, the steady-state current-voltage (i-V) curves measured using single conical glass nanopores in different electrolyte solutions are fitted by solving Poisson and Nernst-Planck equations through finite element approach. Both high and low conductivity state currents of the rectified i-V curve are quantitatively fitted in simulation at less than 5% error. The overestimation of low conductivity state current using existing models is overcome by the introduction of an exponential SCD distribution inside the conical nanopore. A maximum SCD value at the pore orifice is determined from the fitting of the high conductivity state current, while the distribution length of the exponential SCD gradient is determined by fitting the low conductivity state current. Quantitative fitting of the rectified i-V responses and the efficacy of the proposed model are further validated by the comparison of electrolytes with different types of cations (K(+) and Li(+)). The gradient distribution of surface charges is proposed to be dependent on the local electric field distribution inside the conical nanopore.


Assuntos
Nanoporos , Eletrólitos/química , Transporte de Íons , Eletricidade Estática , Propriedades de Superfície
16.
J Phys Chem A ; 117(40): 10470-6, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24004091

RESUMO

The structure of the recently discovered Au130-thiolate and -dithiolate clusters is explored in a combined experiment-theory approach. Rapid electron diffraction in scanning/transmission electron microscopy (STEM) enables atomic-resolution imaging of the gold core and the comparison with density functional theory (DFT)-optimized realistic structure models. The results are consistent with a 105-atom truncated-decahedral core protected by 25 short staple motifs, incorporating disulfide bridges linking the dithiolate ligands. The optimized structure also accounts, via time-dependent DFT (TD-DFT) simulation, for the distinctive optical absorption spectrum, and rationalizes the special stability underlying the selective formation of the Au130 cluster in high yield. The structure is distinct from, yet shares some features with, each of the known Au102 and Au144/Au146 systems.

17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(11): 3028-31, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24555374

RESUMO

Fourier transform infrared (FTIR) microspectroscopy technology is the combination of the FTIR spectrometer and the microscope. This technology is of simple preparation of the samples, can be used in micro-area analysis and micro-samples, and reflect the nature of the samples spectra. Panax ginseng include mountain cultivated ginseng (MCG), garden cultivated ginseng (GCG) and mountain wild ginseng (MWG), but the excavation of MWG is prohibited in China. So, only MCG and GCG were collected and recorded in Chinese pharmacopoeia. In this study, we developed a discriminant analysis (DA) method for recognition of MCG and GCG using FTIR microspectroscopy technology. Twenty MCG samples and twenty four GCG samples were obtained, and their spectra of IR microspectroscopy were collected. Then 33 samples were randomly selected into calibration set and the remaining 11 of the samples were selected into validation set. The authors optimized the pretreatment method, the principal components, the modeling region and the scanning parts when developing the models. The optimized model of discriminant analysis was developed using the pretreatment multiplicative scatter correction (MSC) + Savitzky-Golay filter (SG) smoothing, the region 3 932.14-669.18 cm(-1), 4 principal components and the rhizome part. The accuracy of the optimized model got up to 100%. The result demonstrated that infrared microspectroscopy technology combined with DA is of simple operation, rapid, nondestructive and effective, and can be applied to recognize MCG and GCG.


Assuntos
Panax/classificação , Espectroscopia de Infravermelho com Transformada de Fourier , China , Análise Discriminante
18.
Methods Mol Biol ; 2630: 117-133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689180

RESUMO

Quantification of circulating microRNAs (miRNAs) or viral RNAs is of great significance because of their broad relevance to human health. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR), as well as microarray and gene sequencing, are considered mainstream techniques for miRNA identification and quantitation and the gold standard for SARS-CoV2 detection in the COVID-19 pandemic. However, these laboratory techniques are challenged by the low levels and wide dynamic range (from aM to nM) of miRNAs in a physiological sample, as well as the difficulty in the implementation in point-of-care settings. Here, we describe a one-step label-free electrochemical sensing technique by assembling self-folded multi-stem DNA-redox probe structure on gold microelectrodes and introducing a reductant, tris(2-carboxyethyl) phosphine hydrochloride (TCEP), in the detection buffer solution to achieve ultrasensitive detection with a detection limit of 0.1 fM that can be further improved if needed.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , MicroRNAs , Humanos , MicroRNAs/análise , Microeletrodos , RNA Viral , Pandemias , Limite de Detecção , SARS-CoV-2 , Técnicas Eletroquímicas/métodos , Sondas de DNA , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química
19.
J Am Chem Soc ; 134(8): 3651-4, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22313339

RESUMO

Memristive and memcapacitive behaviors are observed from ion transport through single conical nanopores in SiO(2) substrate. In i-V measurements, current is found to depend on not just the applied bias potential but also previous conditions in the transport-limiting region inside the nanopore (history-dependent, or memory effect). At different scan rates, a constant cross-point potential separates normal and negative hysteresis loops at low and high conductivity states, respectively. Memory effects are attributed to the finite mobility of ions as they redistribute within the negatively charged nanopore under applied potentials. A quantative correlation between the cross-point potential and electrolyte concentration is established.

20.
Anal Chem ; 84(16): 6926-9, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22873640

RESUMO

Surface modification will change the surface charge density (SCD) at the signal-limiting region of nanochannel devices. By fitting the measured i-V curves in simulation via solving the Poisson and Nernst-Planck equations, the SCD and therefore the surface coverage can be noninvasively quantified. Amine terminated organosilanes are employed to chemically modify single conical nanopores. Determined by the protonation-deprotonation of the functional groups, the density and polarity of surface charges are adjusted by solution pH. The rectified current at high conductivity states is found to be proportional to the SCD near the nanopore orifice. This correlation allows the noninvasive determination of SCD and surface coverage of individual conical nanopores.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa