RESUMO
Gene-edited animals are crucial for addressing fundamental questions in biology and medicine and hold promise for practical applications. In light of the rapid advancement of gene editing technologies over the past decade, a dramatically increased number of gene-edited animals have been generated. Genome editing at off-target sites can, however, introduce genomic variations, potentially leading to unintended functional consequences in these animals. So, there is an urgent need to systematically collect and collate these variations in gene-edited animals to aid data mining and integrative in-depth analyses. However, existing databases are currently insufficient to meet this need. Here, we present the Variation Database of Gene-Edited animals (VDGE, https://ngdc.cncb.ac.cn/vdge), the first open-access repository to present genomic variations and annotations in gene-edited animals, with a particular focus on larger animals such as monkeys. At present, VDGE houses 151 on-target mutations from 210 samples, and 115,710 variations identified from 107 gene-edited and wild-type animal trios through unified and standardized analysis and concurrently provides comprehensive annotation details for each variation, thus facilitating the assessment of their functional consequences and promoting mechanistic studies and practical applications for gene-edited animals.
RESUMO
The diversity observed in canine breed phenotypes, together with their risk for heritabily disorders of relevance to dogs and humans, makes the species an ideal subject for studies aimed at understanding the genetic basis of complex traits and human biomedical models. Dog10K is an ongoing international collaboration that aims to uncover the genetic basis of phenotypic diversity, disease, behavior, and domestication history of dogs. To best present and make the extensive data accessible and user friendly, we have established the Dog10K (http://dog10k.kiz.ac.cn/) database, a comprehensive-omics resource summarizing multiple types of data. This database integrates single nucleotide variants (SNVs) from 1987 canine genomes, de-novo mutations (DNMs) from 43 dog breeds with >40× sequence, RNA-seq data of 105057 single nuclei from hippocampus, 74067 single cells from leukocytes and 30 blood samples from published canid studies. We provide clear visualization, statistics, browse, searching, and downloading functions for all data. We have integrated three analysis tools, Selscan, LiftOver and AgeConversion, to aid researchers in custom exploration of the comprehensive-omics data. The Dog10K database will serve as a foundational platform for analyzing, presenting and utilizing canine multi-omics data.
RESUMO
The origins and extreme morphological evolution of the modern dog breeds are poorly studied because the founder populations are extinct. Here, we analyse eight 100 to 200 years old dog fur samples obtained from traditional North Swedish clothing, to explore the origin and artificial selection of the modern Nordic Lapphund and Elkhound dog breeds. Population genomic analysis confirmed the Lapphund and Elkhound breeds to originate from the local dog population, and showed a distinct decrease in genetic diversity in agreement with intense breeding. We identified eleven genes under positive selection during the breed development. In particular, the MSRB3 gene, associated with breed-related ear morphology, was selected in all Lapphund and Elkhound breeds, and functional assays showed that a SNP mutation in the 3'UTR region suppresses its expression through miRNA regulation. Our findings demonstrate analysis of near-modern dog artifacts as an effective tool for interpreting the origin and artificial selection of the modern dog breeds.
Assuntos
Pelo Animal , Seleção Genética , Animais , Cães/genética , Polimorfismo de Nucleotídeo Único , Cruzamento , Suécia , Variação Genética , MicroRNAs/genéticaRESUMO
Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149â T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007â T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.
Assuntos
Lobos , Cães , Animais , Lobos/genética , Herança Multifatorial , Genoma , Genômica , Sequência de BasesRESUMO
To compare the merits and drawbacks of three approaches for establishing a rabbit model of nonobstructive coronary microcirculatory disease, namely, open thoracic subtotal ligation of coronary arteries, ultrasound-guided cardiac microsphere injection, and sodium laurate injection. New Zealand rabbits were allocated to four groups: a normal group (Blank group), an Open-chest group (Open-chest), a microsphere group (Echo-M), and a sodium laurate group (Echo-SL), each comprising 10 rabbits. The rabbits were sacrificed 24 h after the procedures, and their echocardiography, stress myocardial contrast echocardiography, pathology, and surgical times were compared. The results demonstrated varying degrees of reduced cardiac function in all three experimental groups, the Open-chest group exhibiting the most significant decline. The myocardial filling in the affected areas was visually analyzed by myocardial contrast echocardiography, revealing sparse filling at rest but more after stress. Quantitative analysis of perfusion parameters (ß, A, MBF) in the affected myocardium showed reduced values, the Open-chest group having the most severe reductions. No differences were observed in stress myocardial acoustic imaging parameters between the Echo-M and Echo-SL groups. Among the pathological presentations, the Open-chest model predominantly exhibited localized ischemia, while the Echo-M model was characterized by mechanical physical embolism, and the Echo-SL model displayed in situ thrombosis as the primary pathological feature. Inflammatory responses and collagen deposition were observed in all groups, with the severity ranking of Open-chest > Echo-SL > Echo-M. The ultrasound-guided intracardiac injection method used in this experiment outperformed open-chest surgery in terms of procedural efficiency, invasiveness, and maneuverability. This study not only optimizes established cardiac injection techniques but also offers valuable evidence to support clinical investigations through a comparison of various modeling methods.
Assuntos
Doença da Artéria Coronariana , Circulação Coronária , Coelhos , Animais , Microcirculação , Circulação Coronária/fisiologia , Miocárdio/patologiaRESUMO
Despite intensive studies in modeling neuropsychiatric disorders especially autism spectrum disorder (ASD) in animals, many challenges remain. Genetic mutant mice have contributed substantially to the current understanding of the molecular and neural circuit mechanisms underlying ASD. However, the translational value of ASD mouse models in preclinical studies is limited to certain aspects of the disease due to the apparent differences in brain and behavior between rodents and humans. Non-human primates have been used to model ASD in recent years. However, a low reproduction rate due to a long reproductive cycle and a single birth per pregnancy, and an extremely high cost prohibit a wide use of them in preclinical studies. Canine model is an appealing alternative because of its complex and effective dog-human social interactions. In contrast to non-human primates, dog has comparable drug metabolism as humans and a high reproduction rate. In this study, we aimed to model ASD in experimental dogs by manipulating the Shank3 gene as SHANK3 mutations are one of most replicated genetic defects identified from ASD patients. Using CRISPR/Cas9 gene editing, we successfully generated and characterized multiple lines of Beagle Shank3 (bShank3) mutants that have been propagated for a few generations. We developed and validated a battery of behavioral assays that can be used in controlled experimental setting for mutant dogs. bShank3 mutants exhibited distinct and robust social behavior deficits including social withdrawal and reduced social interactions with humans, and heightened anxiety in different experimental settings (n = 27 for wild-type controls and n = 44 for mutants). We demonstrate the feasibility of producing a large number of mutant animals in a reasonable time frame. The robust and unique behavioral findings support the validity and value of a canine model to investigate the pathophysiology and develop treatments for ASD and potentially other psychiatric disorders.
Assuntos
Transtorno do Espectro Autista , Animais , Cães , Humanos , Transtorno do Espectro Autista/genética , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Edição de Genes , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismoRESUMO
Brain development and function are governed by precisely regulated protein expressions in different regions. To date, multiregional brain proteomes have been systematically analyzed only for adult human and mouse brains. To understand the underpinnings of brain development and function, we generated proteomes from six regions of the postnatal brain at three developmental stages of domestic dogs (Canis familiaris), which are special among animals in terms of their remarkable human-like social cognitive abilities. Quantitative analysis of the spatiotemporal proteomes identified region-enriched synapse types at different developmental stages and differential myelination progression in different brain regions. Through integrative analysis of inter-regional expression patterns of orthologous proteins and genome-wide cis-regulatory element frequencies, we found that proteins related with myelination and hippocampus were highly correlated between dog and human but not between mouse and human, although mouse is phylogenetically closer to human. Moreover, the global expression patterns of neurodegenerative disease and autism spectrum disorder-associated proteins in dog brain more resemble human brain than in mouse brain. The high similarity of myelination and hippocampus-related pathways in dog and human at both proteomic and genetic levels may contribute to their shared social cognitive abilities. The inter-regional expression patterns of disease-associated proteins in the brain of different species provide important information to guide mechanistic and translational study using appropriate animal models.
Assuntos
Transtorno do Espectro Autista , Doenças Neurodegenerativas , Adulto , Animais , Encéfalo , Cães , Humanos , Camundongos , Proteoma , ProteômicaRESUMO
In angiosperms, the timely delivery of sperm cell nuclei by pollen tube (PT) to the ovule is vital for double fertilization. Penetration of PT into maternal stigma tissue is a critical step for sperm cell nuclei delivery, yet little is known about the process. Here, a male-specific and sporophytic mutant xt6, where PTs are able to germinate but unable to penetrate the stigma tissue, is reported in Oryza sativa. Through genetic study, the causative gene was identified as Chalcone synthase (OsCHS1), encoding the first enzyme in flavonoid biosynthesis. Indeed, flavonols were undetected in mutant pollen grains and PTs, indicating that the mutation abolished flavonoid biosynthesis. Nevertheless, the phenotype cannot be rescued by exogenous application of quercetin and kaempferol as reported in maize and petunia, suggesting a different mechanism exists in rice. Further analysis showed that loss of OsCHS1 function disrupted the homeostasis of flavonoid and triterpenoid metabolism and led to the accumulation of triterpenoid, which inhibits significantly α-amylase activity, amyloplast hydrolysis and monosaccharide content in xt6, these ultimately impaired tricarboxylic acid (TCA) cycle, reduced ATP content and lowered the turgor pressure as well. Our findings reveal a new mechanism that OsCHS1 modulates starch hydrolysis and glycometabolism through modulating the metabolic homeostasis of flavonoids and triterpenoids which affects α-amylase activity to maintain PT penetration in rice, which contributes to a better understanding of the function of CHS1 in crop fertility and breeding.
Assuntos
Oryza , Tubo Polínico , Tubo Polínico/genética , Flavonoides/metabolismo , Oryza/metabolismo , Melhoramento Vegetal , Sementes , Homeostase , Amido/metabolismo , alfa-Amilases/metabolismoRESUMO
OBJECTIVES: To predict kidney fibrosis in patients with chronic kidney disease using radiomics of two-dimensional ultrasound (B-mode) and Sound Touch Elastography (STE) images in combination with clinical features. METHODS: The Mindray Resona 7 ultrasonic diagnostic apparatus with SC5-1U convex array probe (bandwidth frequency of 1-5 MHz) was used to perform two-dimensional ultrasound and STE software. The severity of cortical tubulointerstitial fibrosis was divided into three grades: mild interstitial fibrosis and tubular atrophy (IFTA), fibrotic area < 25%; moderate IFTA, fibrotic area 26-50%; and severe IFTA, fibrotic area > 50%. After extracting radiomics from B-mode and STE images in these patients, we analyzed two classification schemes: mild versus moderate-to-severe IFTA, and mild-to-moderate versus severe IFTA. A nomogram was constructed based on multiple logistic regression analyses, combining clinical and radiomics. The performance of the nomogram for differentiation was evaluated using receiver operating characteristic (ROC), calibration, and decision curves. RESULTS: A total of 150 patients undergoing kidney biopsy were enrolled (mild IFTA: n = 74; moderate IFTA: n = 33; severe IFTA: n = 43) and randomized into training (n = 105) and validation cohorts (n = 45). To differentiate between mild and moderate-to-severe IFTA, a nomogram incorporating STE radiomics, albumin, and estimated glomerular filtration (eGFR) rate achieved an area under the ROC curve (AUC) of 0.91 (95% confidence interval [CI]: 0.85-0.97) and 0.85 (95% CI: 0.77-0.98) in the training and validation cohorts, respectively. Between mild-to-moderate and severe IFTA, the nomogram incorporating B-mode and STE radiomics features, age, and eGFR achieved an AUC of 0.93 (95% CI: 0.89-0.98) and 0.83 (95% CI: 0.70-0.95) in the training and validation cohorts, respectively. Finally, we performed a decision curve analysis and found that the nomogram using both radiomics and clinical features exhibited better predictability than any other model (DeLong test, p < 0.05 for the training and validation cohorts). CONCLUSION: A nomogram based on two-dimensional ultrasound and STE radiomics and clinical features served as a non-invasive tool capable of differentiating kidney fibrosis of different severities. KEY POINTS: ⢠Radiomics calculated based on the ultrasound imaging may be used to predict the severities of kidney fibrosis. ⢠Radiomics may be used to identify clinical features associated with the progression of tubulointerstitial fibrosis in patients with CKD. ⢠Non-invasive ultrasound imaging-based radiomics method with accuracy aids in detecting renal fibrosis with different IFTA severities.
Assuntos
Técnicas de Imagem por Elasticidade , Insuficiência Renal Crônica , Humanos , Ultrassonografia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico por imagem , Calibragem , Nomogramas , Fibrose , Estudos RetrospectivosRESUMO
AIMS/HYPOTHESIS: Cancer has contributed to an increasing proportion of diabetes-related deaths, while lifestyle management is the cornerstone of both diabetes care and cancer prevention. We aimed to evaluate the associations of combined healthy lifestyles with total and site-specific cancer risks among individuals with diabetes. METHODS: We included 92,239 individuals with diabetes but without cancer at baseline from five population-based cohorts in the USA (National Health and Nutrition Examination Survey and National Institutes of Health [NIH]-AARP Diet and Health Study), the UK (UK Biobank study) and China (Dongfeng-Tongji cohort and Kailuan study). Healthy lifestyle scores (range 0-5) were constructed based on current nonsmoking, low-to-moderate alcohol drinking, adequate physical activity, healthy diet and optimal bodyweight. Cox regressions were used to calculate HRs for cancer morbidity and mortality, adjusting for sociodemographic, medical and diabetes-related factors. RESULTS: During 376,354 person-years of follow-up from UK Biobank and the two Chinese cohorts, 3229 incident cancer cases were documented, and 6682 cancer deaths were documented during 1,089,987 person-years of follow-up in the five cohorts. The pooled multivariable-adjusted HRs (95% CIs) comparing participants with 4-5 vs 0-1 healthy lifestyle factors were 0.73 (0.61, 0.88) for incident cancer and 0.55 (0.46, 0.67) for cancer mortality, and ranged between 0.41 and 0.63 for oesophagus, lung, liver, colorectum, breast and kidney cancers. Findings remained consistent across different cohorts and subgroups. CONCLUSIONS/INTERPRETATION: This international cohort study found that adherence to combined healthy lifestyles was associated with lower risks of total cancer morbidity and mortality as well as several subtypes (oesophagus, lung, liver, colorectum, breast and kidney cancers) among individuals with diabetes.
Assuntos
Diabetes Mellitus , Neoplasias Renais , Humanos , Estudos de Coortes , Inquéritos Nutricionais , Estudos Prospectivos , Estilo de Vida Saudável , Morbidade , China/epidemiologia , Reino Unido/epidemiologia , Fatores de RiscoRESUMO
Coexistence and cooperation between dogs and humans over thousands of years have supported convergent evolutionary processes in the two species. Previous studies found that Eurasian dogs evolved into a distinct geographic cluster. In this study, we used the genomes of 242 European dogs, 38 Southeast Asian indigenous (SEAI) dogs, and 41 gray wolves to identify adaptation of European dogs . We report 86 unique positively selected genes in European dogs, among which is LCT (lactase). LCT encodes lactase, which is fundamental for the digestion of lactose. We found that an A-to-G mutation (chr19:38,609,592) is almost fixed in Middle Eastern and European dogs. The results of two-dimensional site frequency spectrum (2D SFS) support that the mutation is under soft sweep . We inferred that the onset of positive selection of the mutation is shorter than 6,535 years and behind the well-developed dairy economy in central Europe. It increases the expression of LCT by reducing its binding with ZEB1, which would enhance dog's ability to digest milk-based diets. Our study uncovers the genetic basis of convergent evolution between humans and dogs with respect to diet, emphasizing the import of the dog as a biomedical model for studying mechanisms of the digestive system.
Assuntos
Lactase , Seleção Genética , Animais , Cães , Frequência do Gene , Humanos , Lactase/genética , Lactase/metabolismo , Lactose/metabolismo , Polimorfismo de Nucleotídeo Único , População BrancaRESUMO
Although DNA array-based approaches for genome-wide association studies (GWAS) permit the collection of thousands of low-cost genotypes, it is often at the expense of resolution and completeness, as SNP chip technologies are ultimately limited by SNPs chosen during array development. An alternative low-cost approach is low-pass whole genome sequencing (WGS) followed by imputation. Rather than relying on high levels of genotype confidence at a set of select loci, low-pass WGS and imputation rely on the combined information from millions of randomly sampled low-confidence genotypes. To investigate low-pass WGS and imputation in the dog, we assessed accuracy and performance by downsampling 97 high-coverage (> 15×) WGS datasets from 51 different breeds to approximately 1× coverage, simulating low-pass WGS. Using a reference panel of 676 dogs from 91 breeds, genotypes were imputed from the downsampled data and compared to a truth set of genotypes generated from high-coverage WGS. Using our truth set, we optimized a variant quality filtering strategy that retained approximately 80% of 14 M imputed sites and lowered the imputation error rate from 3.0% to 1.5%. Seven million sites remained with a MAF > 5% and an average imputation quality score of 0.95. Finally, we simulated the impact of imputation errors on outcomes for case-control GWAS, where small effect sizes were most impacted and medium-to-large effect sizes were minorly impacted. These analyses provide best practice guidelines for study design and data post-processing of low-pass WGS-imputed genotypes in dogs.
Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Estudos de Casos e Controles , Cães , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do GenomaRESUMO
Hydrogen trapping is a key factor in designing advanced vanadium alloys and steels, where the influence of carbon vacancies is still elusive. Herein we have investigated the effect of carbon vacancies on the hydrogen trapping of defect-complexes in vanadium carbide using first-principles calculations. When a carbon vacancy is present, the second nearest neighboring trigonal interstitial is a stable hydrogen trapping site. A C vacancy enhances the hydrogen trapping ability by reducing the chemical and mechanical effects on H atom solution energy. Electronic structure analysis shows that C vacancies increase the charge density and the Bader atomic volume, leading to a lower H atom solution energy. The strength of the V-H bond is predominant in determining the hydrogen trapping ability in the presence of a C vacancy, in contrast to that of a C-H bond when the C vacancy is absent.
RESUMO
Correction for 'First-principles insights into hydrogen trapping in interstitial-vacancy complexes in vanadium carbide' by Shuai Tang et al., Phys. Chem. Chem. Phys., 2022, DOI: https://doi.org/10.1039/d2cp02425j.
RESUMO
The ancestral homeland of Australian dingoes and Pacific dogs is proposed to be in South China. However, the location and timing of their dispersal and relationship to dog domestication is unclear. Here, we sequenced 7,000- to 2,000-year-old complete mitochondrial DNA (mtDNA) genomes of 27 ancient canids (one gray wolf and 26 domestic dogs) from the Yellow River and Yangtze River basins (YYRB). These are the first complete ancient mtDNA of Chinese dogs from the cradle of early Chinese civilization. We found that most ancient dogs (18/26) belong to the haplogroup A1b lineage that is found in high frequency in present-day Australian dingoes and precolonial Pacific Island dogs but low frequency in present-day China. Particularly, a 7,000-year-old dog from the Tianluoshan site in Zhejiang province possesses a haplotype basal to the entire haplogroup A1b lineage. We propose that A1b lineage dogs were once widely distributed in the YYRB area. Following their dispersal to South China, and then into Southeast Asia, New Guinea and remote Oceania, they were largely replaced by dogs belonging to other lineages in the last 2,000 years in present-day China, especially North China.
Assuntos
Cães/genética , Genoma Mitocondrial , Lobos/genética , Animais , Arqueologia , China , DNA Mitocondrial/análise , FilogeografiaRESUMO
Spicy foods elicit a pungent or hot and painful sensation that repels almost all mammals. Here, we observe that the tree shrew (Tupaia belangeri chinensis), which possesses a close relationship with primates and can directly and actively consume spicy plants. Our genomic and functional analyses reveal that a single point mutation in the tree shrew's transient receptor potential vanilloid type-1 (TRPV1) ion channel (tsV1) lowers its sensitivity to capsaicinoids, which enables the unique feeding behavior of tree shrews with regards to pungent plants. We show that strong selection for this residue in tsV1 might be driven by Piper boehmeriaefolium, a spicy plant that geographically overlaps with the tree shrew and produces Cap2, a capsaicin analog, in abundance. We propose that the mutation in tsV1 is a part of evolutionary adaptation that enables the tree shrew to tolerate pungency, thus widening the range of its diet for better survival.
Assuntos
Especiarias , Tupaia/fisiologia , Adaptação Fisiológica , Aminoácidos/genética , Animais , Capsaicina/farmacologia , Capsicum , Sequência Conservada , Mutação/genética , Nociceptores/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismoRESUMO
The domestic dog (Canis lupus familiaris) is indisputably one of man's best friends. It is also a fundamental model for many heritable human diseases. Here, we present iDog (http://bigd.big.ac.cn/idog), the first integrated resource dedicated to domestic dogs and wild canids. It incorporates a variety of omics data, including genome sequences assemblies for dhole and wolf, genomic variations extracted from hundreds of dog/wolf whole genomes, phenotype/disease traits curated from dog research communities and public resources, gene expression profiles derived from published RNA-Seq data, gene ontology for functional annotation, homolog gene information for multiple organisms and disease-related literature. Additionally, iDog integrates sequence alignment tools for data analyses and a genome browser for data visualization. iDog will not only benefit the global dog research community, but also provide access to a user-friendly consolidation of dog information to a large number of dog enthusiasts.
Assuntos
Bases de Dados Genéticas , Genoma/genética , Software , Animais , Cães , Genômica , Humanos , Anotação de Sequência Molecular , Filogenia , RNA-Seq/tendências , Lobos/genéticaRESUMO
BACKGROUND: Up to now in the surgical treatment of Kümmell's disease combined with thoracolumbar kyphosis, little research has focused on the evaluation of the imaging and clinical outcomes of restoring the normal alignment and sagittal balance of the spine. This study aimed to evaluate the short to mid-term radiographic and clinical outcomes in the treatment of Kümmell's disease with thoracolumbar kyphosis. METHODS: From February 2016 to May 2018, 30 cases of Kümmell's disease with thoracolumbar kyphosis were divided into group A and B according to whether the kyphosis was combined with neurological deficits. All of the cases underwent surgical treatment to regain the normal spinal alignment and sagittal balance. The radiographic outcomes and clinical outcomes of the cases were retrospectively evaluated. The sagittal imaging parameters including sagittal vertebral axis (SVA),thoracic kyphosis (TK),thoracolumbar kyphosis (TLK),lumbar lordosis (LL),pelvic incidence (PI),pelvic tilt (PT),and sacral slope (SS) before operation,immediately after operation,and the last follow-up of each case were measured and evaluated. The clinical results included the Oswestry Disability Index (ODI) and the Numerical Rating Scale (NRS) of the two groups. Statistical software SPSS21.0 was used to analyze the data. RESULTS: In group A: Mean SVA before operation was 75 mm and 26.7 mm at the final postoperative evaluation (P = 0.000); Mean TLK before operation was 39°, and 7.1° at the final postoperative evaluation (P = 0.000); Mean NRS before operation was 4.7, compared with 0.9 at the final postoperative evaluation (P = 0.000). In group B: Mean preoperative SVA was 62.5 mm and decreases to 30.7 mm at the final postoperative evaluation (P = 0.000); Mean TLK before operation was 33°, and 9.7° 2 years post-operation (P = 0.000); Mean NRS prior to surgery was 4.0, and 0.8 at the last follow-up evaluation (P = 0.000). The improvement of the NRS scores of groups A and B was related to the improvement of the cobb angle (P = 0.020); (P = 0.009) respectively. CONCLUSION: In the treatment of Kümmell's disease with thoracolumbar kyphosis,to restore the normal alignment and sagittal balance can obtain a satisfactory radiographic and clinical short and medium-term effects.
Assuntos
Cifose , Lordose , Seguimentos , Humanos , Cifose/diagnóstico por imagem , Cifose/cirurgia , Lordose/diagnóstico por imagem , Lordose/cirurgia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Sacro , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/cirurgia , Resultado do TratamentoRESUMO
Tibetan frogs, Nanorana parkeri, are differentiated genetically but not morphologically along geographical and elevational gradients in a challenging environment, presenting a unique opportunity to investigate processes leading to speciation. Analyses of whole genomes of 63 frogs reveal population structuring and historical demography, characterized by highly restricted gene flow in a narrow geographic zone lying between matrilines West (W) and East (E). A population found only along a single tributary of the Yalu Zangbu River has the mitogenome only of E, whereas nuclear genes of W comprise 89-95% of the nuclear genome. Selection accounts for 579 broadly scattered, highly divergent regions (HDRs) of the genome, which involve 365 genes. These genes fall into 51 gene ontology (GO) functional classes, 14 of which are likely to be important in driving reproductive isolation. GO enrichment analyses of E reveal many overrepresented functional categories associated with adaptation to high elevations, including blood circulation, response to hypoxia, and UV radiation. Four genes, including DNAJC8 in the brain, TNNC1 and ADORA1 in the heart, and LAMB3 in the lung, differ in levels of expression between low- and high-elevation populations. High-altitude adaptation plays an important role in maintaining and driving continuing divergence and reproductive isolation. Use of total genomes enabled recognition of selection and adaptation in and between populations, as well as documentation of evolution along a stepped cline toward speciation.
Assuntos
Anuros/genética , Anuros/fisiologia , Fluxo Gênico/genética , Especiação Genética , Animais , Hibridização Genética , Metagenômica , Filogenia , Seleção Genética , TibetRESUMO
BACKGROUND: Advances in genome technology have simplified a new comprehension of the genetic and historical processes crucial to rapid phenotypic evolution under domestication. To get new insight into the genetic basis of the dog domestication process, we conducted whole-genome sequence analysis of three wolves and three dogs from Iran which covers the eastern part of the Fertile Crescent located in Southwest Asia where the independent domestication of most of the plants and animals has been documented and also high haplotype sharing between wolves and dog breeds has been reported. RESULTS: Higher diversity was found within the wolf genome compared with the dog genome. A total number of 12.45 million SNPs were detected in all individuals (10.45 and 7.82 million SNPs were identified for all the studied wolves and dogs, respectively) and a total number of 3.49 million small Indels were detected in all individuals (3.11 and 2.24 million small Indels were identified for all the studied wolves and dogs, respectively). A total of 10,571 copy number variation regions (CNVRs) were detected across the 6 individual genomes, covering 154.65 Mb, or 6.41%, of the reference genome (canFam3.1). Further analysis showed that the distribution of deleterious variants in the dog genome is higher than the wolf genome. Also, genomic annotation results from intron and intergenic regions showed that the proportion of variations in the wolf genome is higher than that in the dog genome, while the proportion of the coding sequences and 3'-UTR in the dog genome is higher than that in the wolf genome. The genes related to the olfactory and immune systems were enriched in the set of the structural variants (SVs) identified in this work. CONCLUSIONS: Our results showed more deleterious mutations and coding sequence variants in the domestic dog genome than those in wolf genome. By providing the first Iranian dog and wolf variome map, our findings contribute to understanding the genetic architecture of the dog domestication.