Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int Arch Allergy Immunol ; 185(7): 659-667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467118

RESUMO

INTRODUCTION: This study involves the collation and analysis of clinical characteristics and laboratory findings in patients with multiple myeloma (MM) combined with renal insufficiency. The objective was to assess the impact of various treatment methods on patient outcomes and the incidence of adverse events in individuals with MM and renal insufficiency. METHODS: We analyzed the correlation between clinical characteristics, gene loci, fluorescence in situ hybridization, treatment methods, and prognosis in patients with MM and renal insufficiency. The differences in hematological and therapeutic efficacy indexes between two groups subjected to different treatments were evaluated. The assessment of treatment effectiveness was based on the total effective rate, calculated as the sum of stringent CR rate, complete remission rate, very good partial remission rate, and partial remission rate. RESULTS: (1) The renal insufficiency group exhibited higher percentages of bone marrow abnormal plasma cells, lactate dehydrogenase (LDH), blood calcium, white blood cell count, percentage of neutrophils, and blood ß2-microglobulin (ß2-MG) levels compared to the normal renal function group. Conversely, hemoglobin levels and lymphocyte percentage were lower in the renal insufficiency group. Binary logistic regression analysis identified hemoglobin, blood calcium values, blood ß2-MG, and LDH as independent risk factors for the development of renal insufficiency in patients with MM (p < 0.05). (2) Based on the Durie-Salmon staging criteria, the proportion of Stage III patients was the highest (up to 81.8%), indicating that patients with MM usually suffer from insidious disease, often with high tumor load and late-disease stage at the time of consultation. International Staging System (ISS) and Revised ISS staging also revealed a higher proportion of Stage III patients in the renal insufficiency group (p < 0.05), indicating a worse long-term prognosis in patients with MM and renal insufficiency. (3) Before treatment, there was no significant difference between the two groups in the analysis of various indices. Complications such as sepsis, herpes zoster, peripheral neuropathy, thrombosis, secondary pulmonary infection, and cardiac complications were significantly lower in the BCD group (Bortezomib + Cyclophosphamide + Dexamethasone) compared to the BD group (Bortezomib + Dexamethasone) (χ2 = 6.333, p < 0.05), suggesting fewer complications with the BCD regimen. (4) The clinical treatment effects analysis indicated that the BCD group demonstrated a more significant impact than the BD group in the treatment of MM. CONCLUSION: The application of the BCD regimen in the treatment of MM has shown significant efficiency, effectively alleviating clinical symptoms with fewer adverse reactions and high safety.


Assuntos
Mieloma Múltiplo , Insuficiência Renal , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/complicações , Mieloma Múltiplo/diagnóstico , Insuficiência Renal/etiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Prognóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Dexametasona/uso terapêutico , Adulto
2.
Langmuir ; 40(19): 10281-10292, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687814

RESUMO

The flotation recovery of fine particles faces serious challenges due to the lack of kinetic energy required for supporting their radial displacement and attachment with bubbles. Generally, the hydrodynamic resistance and repulsive disjoining pressure successively inhibit the liquid outflow intervening between the bubble and solid surfaces. To quantitatively characterize the influence of the main repulsion on film thinning time, experiments have been designed in three different aqueous systems. Bubble surface mobility closely associated with hydrodynamic resistance was determined by the rising bubble technique, and the DLVO theory was employed to confirm the evolution of electrostatic repulsion. The film drainage process was then measured based on the high-speed microscopic interferometry. Furthermore, the influence of the main repulsion on bubble-solid surface interactions was examined by flotation recovery. Results show that the earlier buildup of hydrodynamic force ran through the whole film thinning process, and under immobile conditions, the central region gradually became dominant in film thinning due to the very limited fluid flow at the thinnest rim position. Therefore, to achieve the identical film thickness (∼100 nm), the large hydrodynamic resistance could prolong the film thinning time by about 1 order of magnitude, compared with that induced by electrostatic repulsion, which accounts for the increased flotation recovery by 10% using mobile bubbles. This study not only enhances the understanding of how typical repulsive forces work in film drainage dynamics but also opens up an avenue for enhancing flotation and avoiding wasting resources by modulating bubble surface mobility and thus micro/nanoscale fluid flow.

3.
Protein Expr Purif ; 223: 106551, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38997076

RESUMO

Hyaluronidase, an enzyme that degrades hyaluronic acid (HA), is utilized in clinical settings to facilitate drug diffusion, manage extravasation, and address injection-related complications linked to HA-based fillers. In this study, a novel hyaluronate lyase EsHyl8 was cloned, expressed, and characterized from Escherichia sp. A99 of human intestinal origin. This lyase belongs to polysaccharide lyase (PL) family 8, and showed specific activity towards HA. EsHyl8 exhibited optimal degradation at 40 °C and pH 6.0. EsHyl8 exhibited a high activity of 376.32 U/mg among hyaluronidases of human gut microorganisms. EsHyl8 was stable at 37 °C and remained about 70 % of activity after incubation at 37 °C for 24 h, demonstrating excellent thermostability. The activity of EsHyl8 was inhibited by Zn2+, Cu2+, Fe3+, and SDS. EsHyl8 was an endo-type enzyme whose end-product was unsaturated disaccharide. This study enhances our understanding of hyaluronidases from human gut microorganisms.


Assuntos
Clonagem Molecular , Polissacarídeo-Liases , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Escherichia/genética , Escherichia/enzimologia , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Estabilidade Enzimática , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato
4.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891987

RESUMO

Alginate lyases cleave the 1,4-glycosidic bond of alginate by eliminating sugar molecules from its bond. While earlier reported alginate lyases were primarily single catalytic domains, research on multi-module alginate lyases has been lfiguimited. This study identified VsAly7A, a multi-module alginate lyase present in Vibrio sp. QY108, comprising a "Pro-Asp-Thr(PDT)" fragment and two PL-7 catalytic domains (CD I and CD II). The "PDT" fragment enhances the soluble expression level and increases the thermostability and binding affinity to the substrate. Moreover, CD I exhibited greater catalytic efficiency than CD II. The incorporation of PDT-CD I resulted in an increase in the optimal temperature of VsAly7A, whereas CD II displayed a preference for polyG degradation. The multi-domain structure of VsAly7A provides a new idea for the rational design of alginate lyase, whilst the "PDT" fragment may serve as a fusion tag in the soluble expression of recombinant proteins.


Assuntos
Alginatos , Estabilidade Enzimática , Polissacarídeo-Liases , Vibrio , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Vibrio/enzimologia , Vibrio/genética , Alginatos/metabolismo , Alginatos/química , Ligação Proteica , Domínio Catalítico , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Solubilidade , Sequência de Aminoácidos , Temperatura , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
Langmuir ; 39(42): 14859-14868, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37843017

RESUMO

Extended surfactants represent a novel class of anionic-nonionic surfactants with exceptional performance and unique application value in chemically enhanced oil recovery. Although molecular dynamics (MD) simulations can efficiently screen these surfactants, the current research is limited. Here, it is proven for the first time that existing generic force fields (GAFF and CHARMM) cannot accurately describe extended surfactants, and traditional approaches are insufficient for obtaining precise charge parameters. The concept of the respectively optimized force field (ROFF) with the purports of specialization and accuracy is proposed to construct high-accuracy models for MD simulations, and a new approach is developed to simulate the interface model. By combining the newly specialized alkane model, ROFF-based surfactant models, and the innovative simulation protocol, high accuracy and reliability can be obtained in predicting hydration free energies, minimum of area per molecule, and critical micelle concentration of extended surfactants. Key properties of the newly designed extended surfactants in conventional oil-water interfaces and oil reservoir environments are comprehensively predicted by using advanced analytical and characterization methods. Furthermore, the more rigorous mechanism underlying the special amphiphilicity of the extended surfactant is revealed, potentially offering significant improvements over previous empirical perspectives.

6.
J Environ Sci (China) ; 129: 104-114, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36804227

RESUMO

Thallium contamination in water can cause great danger to the environment. In this study, we synthesized manganese oxide-coated sand (MOCS) and investigated the transport and retention behaviors of Tl(I) in MOCS under different conditions. Characterization methods combined with a two-site nonequilibrium transport model were applied to explore the retention mechanisms. The results showed that Tl(I) mobility was strongly inhibited in MOCS media, and the retention capacity calculated from the fitted model was 510.41 mg/g under neutral conditions. The retention process included adsorption and oxidative precipitation by the manganese oxides coated on the sand surface. Cotransport with the same concentration of Mn(II) led to halving Tl(I) retention due to competition for reactive sites. Enhanced Tl(I) retention was observed under alkaline conditions, as increasing pH promoted electronegativity on the media surface. Moreover, the competitive cation Ca2+ significantly weakened Tl(I) retention by occupying adsorption sites. These findings provide new insights into understanding Tl(I) transport behavior in water-saturated porous media and suggest that manganese oxide-coated sand can be a cost-effective filter media for treating Tl-contaminated water.


Assuntos
Areia , Tálio , Tálio/análise , Óxidos/química , Água , Adsorção , Dióxido de Silício/química
7.
Phys Chem Chem Phys ; 25(1): 366-374, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36477340

RESUMO

Three accurate global adiabatic potential energy surfaces for the 13A'', 13A' and 21A' states of SiH2 are constructed by fitting numerous ab initio energies calculated at the aug-cc-pV(Q+d)Z and aug-cc-pV(5+d)Z basis sets based on the multi-reference configuration interaction level with Davidson correction. It is worth noting that the potential energy surface of the 13A'' state is established for the first time. The topographic features of these novel potential energy surfaces are investigated in detail and are very consistent with those obtained in the available literature. Moreover, the integral cross-sections of the corresponding reaction are calculated for the first time using a quasi-classical trajectory method and time-dependent wave packet method, indicating that the 13A'' state makes a major contribution to the reaction of Si(3P) + H2(X1Σ+g) (v = 0, j = 0) → H(2S) + SiH(X2Π) at high collision energies. These new potential energy surfaces provide a reliable foundation for investigation of the dynamics and a component for constructing larger silicon-/hydrogen-containing systems.

8.
Phys Chem Chem Phys ; 24(27): 16637-16646, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766326

RESUMO

An accurate potential energy surface is constructed for the excited state of AlH2 by fitting extensive ab initio points calculated at the multi-reference configuration interaction level based on aug-cc-pV(Q+d)Z and aug-cc-pV(5+d)Z basis sets. All the calculated energies are corrected via the many-body expansion method and extrapolated to the complete basis set limit. The various topographic features of the new potential energy surface are investigated to demonstrate the correct behavior of Al(3P) + H2(X1Σg+) and AlH(a3Π) + H(2S) dissociation limits. By employing the time-dependent wave packet approach, the integral scattering cross-sections obtained from the Coriolis coupling calculation and the centrifugal sudden approximation, respectively, are compared in detail and show that the former has a higher effect on the reaction. Moreover, the thermal rate constants for Al(3P) + H2 (v0 = 0-3, j0 = 0, 2, 4, 6) in the temperature range of 0-5000 K are calculated, thereby providing insights into the influence of ro-vibrational quantum numbers on the thermal rate constants.

9.
Phys Chem Chem Phys ; 24(13): 7759-7767, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293900

RESUMO

An accurate many-body expansion potential energy surface for the ground state of SiH2 is reported. To warrant the correct behavior at the Si (1D) + H2 (X1Σ+g) dissociation channels involving silicon in the first excited Si (1D) and ground Si (3P) states, a switching function formalism has been utilized. A great deal of ab initio points based on aug-cc-pV(Q+d)Z and aug-cc-pV(5+d)Z basis sets are utilized at the multi-reference configuration interaction level using the full-valence-complete-active-space wave function as the reference. Subsequently the calculated energies are corrected via a many-body expansion method to extrapolate to the complete basis set limit. The topographic features of the novel many-body expansion global potential energy surface are studied in detail, showing a good agreement with the theoretical and experimental results in the literature. Moreover, the integral cross-section of the Si (1D) + H2 (X1Σ+g) → H (2S) + SiH (X2Π) reaction has been calculated using the time-dependent wave packet method, which provides support for the reliability of the title potential energy surface. This work can serve as the foundation for the study of Si (1D) + H2 (X1Σ+g) reaction kinetics, and for the construction of the larger multibody expansion potential energy surface of silicon/hydrogen containing systems.

10.
J Phys Chem A ; 126(1): 53-60, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34965124

RESUMO

A great number of ab initio energy points are calculated using the aug-cc-pV(Q,5)Z basis sets at the multireference configuration interaction level and extrapolated to the complete basis set limit. An exact three-dimensional potential energy surface of the ground-state BH2+ is obtained. A switching function is developed to model the transition of B+(3P) to B+(1S) to guarantee the reliable behavior at B+(3P) + H2(X1∑g+) and BH+(X2∑+) + H(2S) dissociation limits. The various topographic features of the new global potential energy surface are discussed in detail, showing a good agreement with the previous results from the theory. The quasi-classical trajectory method is utilized to calculate the integral cross sections of the B+(3P) + H2(X1∑g+) (v = 0, j = 0) → BH+(X2∑+) + H(2S) reaction, which can provide another support for reliability of the title potential energy surface.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa