Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
PLoS Pathog ; 19(9): e1011620, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656756

RESUMO

LGP2 is a RIG-I-like receptor (RLR) known to bind and recognize the intermediate double-stranded RNA (dsRNA) during virus infection and to induce type-I interferon (IFN)-related antiviral innate immune responses. Here, we find that LGP2 inhibits Zika virus (ZIKV) and tick-borne encephalitis virus (TBEV) replication independent of IFN induction. Co-immunoprecipitation (Co-IP) and confocal immunofluorescence data suggest that LGP2 likely colocalizes with the replication complex (RC) of ZIKV by interacting with viral RNA-dependent RNA polymerase (RdRP) NS5. We further verify that the regulatory domain (RD) of LGP2 directly interacts with RdRP of NS5 by biolayer interferometry assay. Data from in vitro RdRP assays indicate that LGP2 may inhibit polymerase activities of NS5 at pre-elongation but not elongation stages, while an RNA-binding-defective LGP2 mutant can still inhibit RdRP activities and virus replication. Taken together, our work suggests that LGP2 can inhibit flavivirus replication through direct interaction with NS5 protein and downregulates its polymerase pre-elongation activities, demonstrating a distinct role of LGP2 beyond its function in innate immune responses.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Infecção por Zika virus , Zika virus , Humanos , RNA Polimerase Dependente de RNA/genética , Nucleotidiltransferases , RNA de Cadeia Dupla
2.
Radiology ; 310(3): e230397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441089

RESUMO

Background Translocator protein (TSPO) PET has been used to visualize microglial activation in neuroinflammation and is a potential imaging tool for detecting autoimmune encephalitis (AIE). Purpose To compare the detection rate between TSPO radioligand fluorine 18 (18F) DPA-714 PET and conventional MRI and assess the relationship between 18F-DPA-714 uptake and clinical features in participants with AIE. Materials and Methods Healthy volunteers and patients with AIE were enrolled in this prospective study between December 2021 and April 2023. All participants underwent hybrid brain 18F-DPA-714 PET/MRI and antibody testing. Modified Rankin scale scoring and AIE-related symptoms were assessed in participants with AIE. Positive findings were defined as intensity of 18F-DPA-714 uptake above a threshold of the mean standardized uptake value ratio (SUVR) plus 2 SD inside the corresponding brain regions of healthy controls. The McNemar test was used to compare the positive detection rate between the two imaging modalities; the independent samples t test was used to compare continuous variables; and correlation with Bonferroni correction was used to assess the relationship between 18F-DPA-714 uptake and clinical features. Results A total of 25 participants with AIE (mean age, 39.24 years ± 19.03 [SD]) and 10 healthy controls (mean age, 28.70 years ± 5.14) were included. The positive detection rate of AIE was 72% (18 of 25) using 18F-DPA-714 PET compared to 44% (11 of 25) using conventional MRI, but the difference was not statistically significant (P = .065). Participants experiencing seizures exhibited significantly higher mean SUVR in the entire cortical region than those without seizures (1.23 ± 0.21 vs 1.15 ± 0.18; P = .003). Of the 13 participants with AIE who underwent follow-up PET/MRI, 11 (85%) demonstrated reduced uptake of 18F-DPA-714 accompanied by relief of symptoms after immunosuppressive treatment. Conclusion 18F-DPA-714 PET has potential value in supplementing MRI for AIE detection. Clinical trial registration no. NCT05293405 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Zaharchuk in this issue.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalite , Doença de Hashimoto , Microglia , Pirazóis , Pirimidinas , Humanos , Adulto , Estudos Prospectivos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Convulsões , Receptores de GABA
3.
Plant Physiol ; 192(1): 274-292, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36746783

RESUMO

Drought stress poses a serious threat to global agricultural productivity and food security. Plant resistance to drought is typically accompanied by a growth deficit and yield penalty. Herein, we report a previously uncharacterized, dicotyledon-specific gene, Stress and Growth Interconnector (SGI), that promotes growth during drought in the oil crop rapeseed (Brassica napus) and the model plant Arabidopsis (Arabidopsis thaliana). Overexpression of SGI conferred enhanced biomass and yield under water-deficient conditions, whereas corresponding CRISPR SGI mutants exhibited the opposite effects. These attributes were achieved by mediating reactive oxygen species (ROS) homeostasis while maintaining photosynthetic efficiency to increase plant fitness under water-limiting environments. Further spatial-temporal transcriptome profiling revealed dynamic reprogramming of pathways for photosynthesis and stress responses during drought and the subsequent recovery. Mechanistically, SGI represents an intrinsically disordered region-containing protein that interacts with itself, catalase isoforms, dehydrins, and other drought-responsive positive factors, restraining ROS generation. These multifaceted interactions stabilize catalases in response to drought and facilitate their ROS-scavenging activities. Taken altogether, these findings provide insights into currently underexplored mechanisms to circumvent trade-offs between plant growth and stress tolerance that will inform strategies to breed climate-resilient, higher yielding crops for sustainable agriculture.


Assuntos
Arabidopsis , Secas , Espécies Reativas de Oxigênio/metabolismo , Melhoramento Vegetal , Arabidopsis/metabolismo , Água/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
4.
Theor Appl Genet ; 137(2): 38, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294547

RESUMO

KEY MESSAGE: We detected the major QTL- qSR.A07, which regulated stem strength and was fine-mapped to 490 kb. BnaA07G0302800ZS and BnaA07G0305700ZS as the candidate functional genes were identified at qSR.A07 locus. The stem's mechanical properties reflect its ability to resist lodging. In rapeseed (Brassica napus L.), although stem lodging negatively affects yield and generates harvesting difficulties, the molecular regulation of stem strength remains elusive. Hence, this study aimed to unravel the main loci and molecular mechanisms governing rapeseed stem strength. A mapping population consisting of 267 RILs (recombinant inbred lines) was developed from the crossed between ZS11 (high stem strength) and 4D122 (low stem strength), and two mechanical properties of stems including stem breaking strength and stem rind penetrometer resistance were phenotyped in four different environments. Four pleiotropic QTLs that were stable in at least two environments were detected. qSR.A07, the major one, was fine-mapped to a 490 kb interval between markers SA7-2711 and SA7-2760 on chromosome 7. It displayed epistatic interaction with qRPR.A09-2. Comparative transcriptome sequencing and analysis unveiled methionine/S-adenosylmethionine cycle (Met/SAM cycle), cytoskeleton organization, sulfur metabolism and phenylpropanoid biosynthesis as the main pathways associated with high stem strength. Further, we identified two candidate genes, BnaA07G0302800ZS and BnaA07G0305700ZS, at qSR.A07 locus. Gene sequence alignment identified a number of InDels, SNPs and amino acid variants in sequences of these genes between ZS11 and 4D122. Finally, based on these genetic variants, we developed three SNP markers of these genes to facilitate future genetic selection and functional studies. These findings offer important genetic resources for the molecular-assisted breeding of novel rapeseed stem lodging-resistant varieties.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Transcriptoma , Mapeamento Cromossômico , Locos de Características Quantitativas
5.
Plant Biotechnol J ; 21(7): 1479-1495, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37170717

RESUMO

Heterosis refers to the better performance of cross progeny compared with inbred parents, and its utilization contributes greatly to agricultural production. Several hypotheses have been proposed to explain heterosis mainly including dominance, over-dominance (or pseudo-overdominance) and epistasis. However, systematic dissection and verification of these hypotheses are rarely documented. Here, comparison of heterosis level across different traits showed that the strong heterosis of composite traits (such as yield) could be attributed to the multiplicative effects of moderate heterosis of component traits, whether at the genome or locus level. Yield heterosis was regulated by a complex trait-QTL network that was characterized by obvious centre-periphery structure, hub QTL, complex up/downstream and positive/negative feedback relationships. More importantly, we showed that better-parent heterosis on yield could be produced in a cross of two near-isogenic lines by the pyramiding and complementation of two major heterotic QTL showing partial-dominance on yield components. The causal gene (BnaA9.CYP78A9) of QC14 was identified, and its heterotic effect results from the heterozygous status of a CACTA-like transposable element in its upstream regulatory region, which led to partial dominance at expression and auxin levels, thus resulting in non-additive expression of downstream responsive genes involved in cell cycle and proliferation, eventually leading to the heterosis of cell number. Taken together, the results at the phenotypic, genetic and molecular levels were highly consistent, which demonstrated that the pyramiding effect of heterotic QTL and the multiplicative effect of individual component traits could well explain substantial parts of yield heterosis in oilseed rape. These results provide in-depth insights into the genetic architecture and molecular mechanism of yield heterosis.


Assuntos
Vigor Híbrido , Locos de Características Quantitativas , Vigor Híbrido/genética , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Fenótipo , Heterozigoto
6.
Nucleic Acids Res ; 49(3): 1567-1580, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33406260

RESUMO

The RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of nucleic acid polymerases. RdRPs are essential in virus life cycle due to their central role in viral genome replication/transcription processes. However, their contribution in host adaption has not been well documented. By solving the RdRP crystal structure of the tick-borne encephalitis virus (TBEV), a tick-borne flavivirus, and comparing the structural and sequence features with mosquito-borne flavivirus RdRPs, we found that a region between RdRP catalytic motifs B and C, namely region B-C, clearly bears host-related diversity. Inter-virus substitutions of region B-C sequence were designed in both TBEV and mosquito-borne Japanese encephalitis virus backbones. While region B-C substitutions only had little or moderate effect on RdRP catalytic activities, virus proliferation was not supported by these substitutions in both virus systems. Importantly, a TBEV replicon-derived viral RNA replication was significantly reduced but not abolished by the substitution, suggesting the involvement of region B-C in viral and/or host processes beyond RdRP catalysis. A systematic structural analysis of region B-C in viral RdRPs further emphasizes its high level of structure and length diversity, providing a basis to further refine its relevance in RNA virus-host interactions in a general context.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/enzimologia , RNA Polimerase Dependente de RNA/química , Animais , Linhagem Celular , Cricetinae , Cristalografia por Raios X , Adaptação ao Hospedeiro , Metiltransferases/química , Modelos Moleculares , RNA/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/química
7.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069438

RESUMO

As plant-specific transcription factors, the TIFY family genes are involved in the responses to a series of biotic and abiotic stresses and the regulation of the development of multiple organs. To explore the potential roles of the TIFY gene family in shoot branching, which can shape plant architecture and finally determine seed yield, we conducted comprehensive genome-wide analyses of the TIFY gene family in Brassica napus. Here, HMMER search and BLASTp were used to identify the TIFY members. A total of 70 TIFY members were identified and divided into four subfamilies based on the conserved domains and motifs. These TIFY genes were distributed across 19 chromosomes. The predicted subcellular localizations revealed that most TIFY proteins were located in the nucleus. The tissue expression profile analyses indicated that TIFY genes were highly expressed in the stem, flower bud, and silique at the transcriptional level. High-proportioned activation of the dormant axillary buds on stems determined the branch numbers of rapeseed plants. Here, transcriptome analyses were conducted on axillary buds in four sequential developing stages, that is, dormant, temporarily dormant, being activated, and elongating (already activated). Surprisingly, the transcription of the majority of TIFY genes (65 of the 70) significantly decreased on the activation of buds. GO enrichment analysis and hormone treatments indicated that the transcription of TIFY family genes can be strongly induced by jasmonic acid, implying that the TIFY family genes may be involved in the regulation of jasmonic acid-mediated branch development. These results shed light on the roles of TIFY family genes in plant architecture.


Assuntos
Brassica napus , Brassica napus/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas , Filogenia
8.
J Exp Bot ; 73(18): 6334-6351, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35675763

RESUMO

The evolution of C4 photosynthesis involved multiple anatomical and physiological modifications, yet our knowledge of the genetic regulation involved remains elusive. In this study, systematic analyses were conducted comparing the C3-C4 intermediate Moricandia suffruticosa and its C3 relative Brassica napus (rapeseed). We found that the leaves of M. suffruticosa had significantly higher vein density than those of B. napus, and the vein density was further increased in M. suffruticosa under drought and heat stress. Moreover, the bundle sheath distance, as the mean distance from the outer wall of one bundle sheath to the outer wall of an adjacent one, decreased and the number of centripetal chloroplasts in bundle sheath cells was found to be altered in M. suffruticosa leaves under drought and heat treatments. These results suggest that abiotic stress can induce a change in an intermediate C3-C4 anatomy towards a C4-like anatomy in land plants. By integrating drought and heat factors, co-expression network and comparative transcriptome analyses between M. suffruticosa and B. napus revealed that inducible auxin signaling regulated vascular development, and autophagy-related vesicle trafficking processes were associated with this stress-induced anatomical change. Overexpressing three candidate genes, MsERF02, MsSCL01, and MsDOF01, increased leaf vein density and/or enhanced photosynthetic assimilation and drought adaptability in the transgenic lines. The findings of this study may improve our understanding of the genetic regulation and evolution of C4 anatomy.


Assuntos
Brassicaceae , Secas , Fotossíntese/fisiologia , Folhas de Planta/genética , Resposta ao Choque Térmico , Ácidos Indolacéticos
9.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563170

RESUMO

Marker-assisted selection enables breeders to quickly select excellent root architectural variations, which play an essential role in plant productivity. Here, ten root-related and shoot biomass traits of a new F6 recombinant inbred line (RIL) population were investigated under hydroponics and resulted in high heritabilities from 0.61 to 0.83. A high-density linkage map of the RIL population was constructed using a Brassica napus 50k Illumina single nucleotide polymorphism (SNP) array. A total of 86 quantitative trait loci (QTLs) explaining 4.16-14.1% of the phenotypic variances were detected and integrated into eight stable QTL clusters, which were repeatedly detected in different experiments. The codominant markers were developed to be tightly linked with three major QTL clusters, qcA09-2, qcC08-2, and qcC08-3, which controlled both root-related and shoot biomass traits and had phenotypic contributions greater than 10%. Among these, qcA09-2, renamed RT.A09, was further fine-mapped to a 129-kb interval with 19 annotated genes in the B. napus reference genome. By integrating the results of real-time PCR and comparative sequencing, five genes with expression differences and/or amino acid differences were identified as important candidate genes for RT.A09. Our findings laid the foundation for revealing the molecular mechanism of root development and developed valuable markers for root genetic improvement in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Mapeamento Cromossômico , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
10.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887301

RESUMO

An excellent root system is responsible for crops with high nitrogen-use efficiency (NUE). The current study evaluated the natural variations in 13 root- and biomass-related traits under a low nitrogen (LN) treatment in a rapeseed association panel. The studied traits exhibited significant phenotypic differences with heritabilities ranging from 0.53 to 0.66, and most of the traits showed significant correlations with each other. The genome-wide association study (GWAS) found 51 significant and 30 suggestive trait-SNP associations that integrated into 14 valid quantitative trait loci (QTL) clusters and explained 5.7-21.2% phenotypic variance. In addition, RNA sequencing was performed at two time points to examine the differential expression of genes (DEGs) between high and low NUE lines. In total, 245, 540, and 399 DEGs were identified as LN stress-specific, high nitrogen (HN) condition-specific, and HNLN common DEGs, respectively. An integrated analysis of GWAS, weighted gene co-expression network, and DEGs revealed 16 genes involved in rapeseed root development under LN stress. Previous studies have reported that the homologs of seven out of sixteen potential genes control root growth and NUE. These findings revealed the genetic basis underlying nitrogen stress and provided worthwhile SNPs/genes information for the genetic improvement of NUE in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Biomassa , Brassica napus/metabolismo , Brassica rapa/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Nitrogênio/metabolismo , RNA-Seq
11.
Anal Chem ; 93(13): 5606-5611, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33764756

RESUMO

When dealing with infectious pathogens, the risk of contamination or infection in the process of detecting them is nonnegligible. Separation-free detection will be beneficial in operation and safety. In this work, we proposed a DNAzyme walker for homogeneous and isothermal detection of enterovirus. The DNAzyme is divided into two inactivate subunits. When the subunit-conjugated antibody binds to the target virus, the activity of the DNAzyme recovers as a result of spatial proximity. The walker propels, and the fluorescence recovers. The final fluorescence intensity of the reaction mixture is related to the concentration of the target virus. The detection limit of this proposed method is 6.6 × 104 copies/mL for EV71 and 4.3 × 104 copies/mL for CVB3, respectively. Besides, this method was applied in detection of EV71 in clinical samples with a satisfactory result. The entire experiment is easy to operate, and the proposed method has great potential for practical use.


Assuntos
DNA Catalítico , Enterovirus Humano A , Enterovirus , Antígenos Virais , Fluorescência
12.
J Exp Bot ; 72(2): 385-397, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33045083

RESUMO

Nitric oxide (NO) is a key signaling molecule regulating several plant developmental and stress responses. Here, we report that NO plays an important role in seed oil content and fatty acid composition. RNAi silencing of Arabidopsis S-nitrosoglutathione reductase 1 (GSNOR1) led to reduced seed oil content. In contrast, nitrate reductase double mutant nia1nia2 had increased seed oil content, compared with wild-type plants. Moreover, the concentrations of palmitic acid (C16:0), linoleic acid (C18:2), and linolenic acid (C18:3) were higher, whereas those of stearic acid (C18:0), oleic acid (C18:1), and arachidonic acid (C20:1) were lower, in seeds of GSNOR1 RNAi lines. Similar results were obtained with rapeseed embryos cultured in vitro with the NO donor sodium nitroprusside (SNP), and the NO inhibitor NG-Nitro-L-arginine Methyl Ester (L-NAME). Compared with non-treated embryos, the oil content decreased in SNP-treated embryos, and increased in L-NAME-treated embryos. Relative concentrations of C16:0, C18:2 and C18:3 were higher, whereas C18:1 concentration decreased in rapeseed embryos treated with SNP. Proteomics and transcriptome analysis revealed that three S-nitrosated proteins and some key genes involved in oil synthesis, were differentially regulated in SNP-treated embryos. Therefore, regulating NO content could be a novel approach to increasing seed oil content in cultivated oil crops.


Assuntos
Ácidos Graxos , Óxido Nítrico , Nitrosação , Óleos de Plantas , Proteína S , Sementes
13.
Mol Ther ; 28(6): 1533-1546, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32304669

RESUMO

Malignant gliomas, the most lethal type of primary brain tumor, continue to be a major therapeutic challenge. Here, we found that enterovirus A71 (EV-A71) can be developed as a novel oncolytic agent against malignant gliomas. EV-A71 preferentially infected and killed malignant glioma cells relative to normal glial cells. The virus receptor human scavenger receptor class B, member 2 (SCARB2), and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1)-mediated cell death were involved in EV-A71-induced oncolysis. In mice with implanted subcutaneous gliomas, intraneoplastic inoculation of EV-A71 caused significant tumor growth inhibition. Furthermore, in mice bearing intracranial orthotopic gliomas, intraneoplastic inoculation of EV-A71 substantially prolonged survival. By insertion of brain-specific microRNA-124 (miR124) response elements into the viral genome, we improved the tumor specificity of EV-A71 oncolytic therapy by reducing its neurotoxicity while maintaining its replication potential and oncolytic capacity in gliomas. Our study reveals that EV-A71 is a potent oncolytic agent against malignant gliomas and may have a role in treating this tumor in the clinical setting.


Assuntos
Enterovirus Humano A/genética , Terapia Genética , Vetores Genéticos/genética , Glioma/genética , Glioma/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Animais , Apoptose , Linhagem Celular Tumoral , Células Cultivadas , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Proteínas de Membrana Lisossomal/genética , Camundongos , Terapia Viral Oncolítica/métodos , Receptores Depuradores/genética , Transgenes , Resultado do Tratamento , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Nanobiotechnology ; 19(1): 295, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583708

RESUMO

Fluorescent labeling and dynamic tracking is a powerful tool for exploring virus infection mechanisms. However, for small-sized viruses, virus tracking studies are usually hindered by a lack of appropriate labeling methods that do not dampen virus yield or infectivity. Here, we report a universal strategy for labeling viruses with chemical dyes and Quantum dots (QDs). Enterovirus 71 (EV71) was produced in a cell line that stably expresses a mutant methionyl-tRNA synthetase (MetRS), which can charge azidonorleucine (ANL) to the methionine sites of viral proteins during translation. Then, the ANL-containing virus was easily labeled with DBCO-AF647 and DBCO-QDs. The labeled virus shows sufficient yield and no obvious decrease in infectivity and can be used for imaging the virus entry process. Using the labeled EV71, different functions of scavenger receptor class B, member 2 (SCARB2), and heparan sulfate (HS) in EV71 infection were comparatively studied. The cell entry process of a strong HS-binding EV71 strain was investigated by real-time dynamic visualization of EV71-QDs in living cells. Taken together, our study described a universal biocompatible virus labeling method, visualized the dynamic viral entry process, and reported details of the receptor usage of EV71.


Assuntos
Enterovirus/metabolismo , Pontos Quânticos/química , Receptores Virais/metabolismo , Animais , Azidas , Linhagem Celular , Chlorocebus aethiops , Enterovirus/genética , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Células HeLa , Humanos , Norleucina/análogos & derivados , Receptores Depuradores/metabolismo , Células Vero , Proteínas Virais , Internalização do Vírus
15.
Nucleic Acids Res ; 47(1): 362-374, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30364964

RESUMO

N6-methyladenosine (m6A) constitutes one of the most abundant internal RNA modifications and is critical for RNA metabolism and function. It has been previously reported that viral RNA contains internal m6A modifications; however, only recently the function of m6A modification in viral RNAs has been elucidated during infections of HIV, hepatitis C virus and Zika virus. In the present study, we found that enterovirus 71 (EV71) RNA undergoes m6A modification during viral infection, which alters the expression and localization of the methyltransferase and demethylase of m6A, and its binding proteins. Moreover, knockdown of m6A methyltransferase resulted in decreased EV71 replication, whereas knockdown of the demethylase had the opposite effect. Further study showed that the m6A binding proteins also participate in the regulation of viral replication. In particular, two m6A modification sites were identified in the viral genome, of which mutations resulted in decreased virus replication, suggesting that m6A modification plays an important role in EV71 replication. Notably, we found that METTL3 interacted with viral RNA-dependent RNA polymerase 3D and induced enhanced sumoylation and ubiquitination of the 3D polymerase that boosted viral replication. Taken together, our findings demonstrated that the host m6A modification complex interacts with viral proteins to modulate EV71 replication.


Assuntos
Adenosina/análogos & derivados , Enterovirus Humano A/genética , Infecções por Enterovirus/genética , Metiltransferases/genética , Adenosina/genética , Adenosina/metabolismo , Infecções por Enterovirus/virologia , Genoma Viral/genética , Células HEK293 , Humanos , Mutação/genética , Processamento Pós-Transcricional do RNA/genética , DNA Polimerase Dirigida por RNA/genética , Sumoilação/genética , Ubiquitinação/genética , Replicação Viral/genética
16.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884791

RESUMO

In seed-bearing plants, the ovule ("small egg") is the organ within the gynoecium that develops into a seed after fertilization. The gynoecium located in the inner compartment of the flower turns into a fruit. The number of ovules in the ovary determines the upper limit or the potential of seed number per fruit in plants, greatly affecting the final seed yield. Ovule number is an important adaptive characteristic for plant evolution and an agronomic trait for crop improvement. Therefore, understanding the mechanism and pathways of ovule number regulation becomes a significant research aspect in plant science. This review summarizes the ovule number regulators and their regulatory mechanisms and pathways. Specially, an integrated molecular network for ovule number regulation is constructed, in which phytohormones played a central role, followed by transcription factors, enzymes, other protein and micro-RNA. Of them, AUX, BR and CK are positive regulator of ovule number, whereas GA acts negatively on it. Interestingly, many ovule number regulators have conserved functions across several plant taxa, which should be the targets of genetic improvement via breeding or gene editing. Many ovule number regulators identified to date are involved in the diverse biological process, such as ovule primordia formation, ovule initiation, patterning, and morphogenesis. The relations between ovule number and related characteristics/traits especially of gynoecium/fruit size, ovule fertility, and final seed number, as well as upcoming research questions, are also discussed. In summary, this review provides a general overview of the present finding in ovule number regulation, which represents a more comprehensive and in-depth cognition on it.


Assuntos
Arabidopsis/anatomia & histologia , Óvulo Vegetal/anatomia & histologia , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Óvulo Vegetal/genética , Reguladores de Crescimento de Plantas/genética , Sementes/citologia , Fatores de Transcrição/metabolismo
17.
Anal Chem ; 92(1): 830-837, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31762266

RESUMO

The accurate and rapid monitoring of the expression levels of enterovirus 71 (EV71)-related microRNAs (miRNAs) can contribute to diagnosis of hand, foot, and mouth disease (HFMD) at the early stage. However, there is currently a lack of convenient methods for simultaneous monitoring of multiplex miRNAs in one step. Herein a one-step method for the simultaneous monitoring of multiple EV71 infection-related miRNAs is developed based on core-satellite structure assembled with magnetic nanobeads and quantum dots (MNs-ssDNA-QDs). In the presence of target miRNAs, duplex-specific nuclease (DSN)-assisted target recycling can be triggered, resulting in the release of QDs and recycling of target miRNAs. Then the simultaneous quantification can be easily realized by recording the corresponding amplified fluorescence signal of QDs in the suspension. With this method, simultaneous detection of hsa-miRNA-296-5p and hsa-miRNA-16-5p, potential biomarkers of EV71 infection, can be easily achieved with femtomolar sensitivity and single-base mismatch specificity. Moreover, the method is successfully used for monitoring of the expression level of miRNAs in EV71-infected cells at different time points, demonstrating the potential for diagnostic applications. With the merits of one-step operation and single-nucleotide mismatch discrimination, this work opens a new avenue for multiplex miRNAs detection. As different nucleotide sequences and multicolor QDs can be employed, this work is expected to offer great potential for the development of high throughput diagnosis.


Assuntos
Enterovirus Humano A/fisiologia , Infecções por Enterovirus/genética , Interações Hospedeiro-Patógeno , MicroRNAs/genética , Pontos Quânticos/química , Biomarcadores/análise , Linhagem Celular , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Infecções por Enterovirus/diagnóstico , Regulação da Expressão Gênica , Humanos , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Nanopartículas de Magnetita/química , MicroRNAs/análise , Espectrometria de Fluorescência/métodos
18.
Plant Biotechnol J ; 18(2): 568-580, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31368615

RESUMO

Silique number is the most important component of yield in rapeseed (Brassica napus L.). To dissect the mechanism underlying the natural variation of silique number in rapeseed germplasm, a series of studies were performed. A panel of 331 core lines was employed to genome-wide association study (GWAS), and 27 loci (including 20 novel loci) were identified. The silique number difference between the more- and fewer-silique lines can be attributed to the accumulative differences in flower number and silique setting rate. Each of them accounted for 75.2% and 24.8%, respectively. The silique number was highly associated with the total photosynthesis and biomass. Microscopic analysis showed that the difference between extremely more- and fewer-silique lines normally occurred at the amount of flower bud but not morphology. Transcriptome analysis of shoot apical meristem (SAM) suggested that most of enriched groups were associated with the auxin biosynthesis/metabolism, vegetative growth and nutrition/energy accumulation. By integrating GWAS and RNA-seq results, six promising candidate genes were identified, and some of them were related to biomass accumulation. In conclusion, the natural variation of silique number is largely affected by the biomass and nutrition accumulation, which essentially reflects the positive regulatory relationship between the source and sink. Our study provides a comprehensive and systematic explanation for natural variation of silique number in rapeseed, which provides a foundation for its improvement.


Assuntos
Brassica napus , Genes de Plantas , Estudo de Associação Genômica Ampla , Brassica napus/genética , Brassica napus/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética
19.
Plant Biotechnol J ; 18(3): 644-654, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31373135

RESUMO

Plant height and branch number are essential components of rapeseed plant architecture and are directly correlated with its yield. Presently, improvement of plant architecture is a major challenge in rapeseed breeding. In this study, we first verified that the two rapeseed BnaMAX1 genes had redundant functions resembling those of Arabidopsis MAX1, which regulates plant height and axillary bud outgrowth. Therefore, we designed two sgRNAs to edit these BnaMAX1 homologs using the CRISPR/Cas9 system. The T0 plants were edited very efficiently (56.30%-67.38%) at the BnaMAX1 target sites resulting in homozygous, heterozygous, bi-allelic and chimeric mutations. Transmission tests revealed that the mutations were passed on to the T1 and T2 progeny. We also obtained transgene-free lines created by the CRISPR/Cas9 editing, and no mutations were detected in potential off-target sites. Notably, simultaneous knockout of all four BnaMAX1 alleles resulted in semi-dwarf and increased branching phenotypes with more siliques, contributing to increased yield per plant relative to wild type. Therefore, these semi-dwarf and increased branching characteristics have the potential to help construct a rapeseed ideotype. Significantly, the editing resources obtained in our study provide desirable germplasm for further breeding of high yield in rapeseed.


Assuntos
Brassica napus/genética , Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Inativação de Genes , Brassica napus/crescimento & desenvolvimento , Genes de Plantas , Mutagênese , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
20.
Plant Biotechnol J ; 18(5): 1124-1140, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31850661

RESUMO

Fruit is seed-bearing structures specific to angiosperm that form from the gynoecium after flowering. Fruit size is an important fitness character for plant evolution and an agronomical trait for crop domestication/improvement. Despite the functional and economic importance of fruit size, the underlying genes and mechanisms are poorly understood, especially for dry fruit types. Improving our understanding of the genomic basis for fruit size opens the potential to apply gene-editing technology such as CRISPR/Cas to modulate fruit size in a range of species. This review examines the genes involved in the regulation of fruit size and identifies their genetic/signalling pathways, including the phytohormones, transcription and elongation factors, ubiquitin-proteasome and microRNA pathways, G-protein and receptor kinases signalling, arabinogalactan and RNA-binding proteins. Interestingly, different plant taxa have conserved functions for various fruit size regulators, suggesting that common genome edits across species may have similar outcomes. Many fruit size regulators identified to date are pleiotropic and affect other organs such as seeds, flowers and leaves, indicating a coordinated regulation. The relationships between fruit size and fruit number/seed number per fruit/seed size, as well as future research questions, are also discussed.


Assuntos
Frutas , Edição de Genes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Domesticação , Flores , Frutas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa