Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Environ Sci Technol ; 57(43): 16522-16531, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844031

RESUMO

Reactive fillers consisting of reduced sulfur and iron species (SFe-ReFs) have received increasing attention in tertiary wastewater treatment for nitrate and phosphate coremoval. However, the existing SFe-ReFs suffer from either low performance (e.g., pyrrhotite and pyrite) or unsatisfactory use in terms of combustible risk and residual nonreactive impurities (e.g., sulfur mixing with natural iron ores). Here, we developed a new type of sulfur-siderite composite ReF (SSCReF) with a structure of natural siderite powders eventually embedded into sulfur. SSCReFs exhibited many excellent properties, including higher mechanical strengths and hardness and especially much poorer ignitability compared to pure sulfur. By using SSCReF to construct packed-bed reactors, the highest denitrification and dephosphorization rates reached 829.70 gN/m3/d (25 wt % siderite) and 36.70 gP/m3/d (75 wt % siderite), respectively. Dephosphorization was demonstrated to be dependent on sulfur-driven denitrification, in which the acid produced from the later process promoted Fe(II) dissolution, which then directly combined with phosphate to form vivianite or further converted into phosphate adsorbents (ferrihydrite, a green rust-like compound). Water flush was an effective way to finally wash out these surface deposited Fe-P compounds, as well as those nonreactive impurities (Si and Al-bearing compounds) detached from SSCReF. Such a highly efficient and safe SSCReF holds considerable application potential in secondary effluent polishing.


Assuntos
Desnitrificação , Nitratos , Reatores Biológicos , Enxofre , Ferro , Fosfatos , Nitrogênio , Processos Autotróficos
2.
Environ Res ; 197: 111029, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744267

RESUMO

Sulfur autotrophic denitrification (SAD) process, as an alternative to heterotrophic denitrification (HD) filter, receives growing interest in polishing the effluent from secondary sewage treatment. Although individual studies have indicated several advantages of SAD over HD, rare study has compared these two systems under identical condition and by using real secondary effluent. In this study, two small pilot scale filters (SAD and HD) were designed with identical configuration and operated parallelly by feeding the real secondary effluent from a WWTP. The results showed SAD filter can be started up without the addition of soluble electron donor, although the time (14 days) was about 3 times longer than that of HD filter. The nitrate removal rate of SAD filter at HRT of 1.4 h was measured as 0.268 ± 0.047 kg N/(m3∙d). Similar value was observed in HD filter with supplementing 90 mg/L COD. The COD concentration of effluent always kept lower than that of influent in SAD filter but not in HD filter. In addition, SAD filter could maintain a stable denitrification performance without backwash for 15 days, while decline of nitrate removal rate was observed in HD filter just 2 days after stopping the backwash. This different behavior was further confirmed as the SAD filter had a better hydraulic flow pattern. Analysis according to high-throughput 16S rRNA gene-based Illumina MiSeq sequencing clearly showed the microbial community evolution and differentiation among the samples of seed sludge, SAD and HD filters. Finally, the economic assessment was carried out, showing the operation cost of SAD filter was over 50% lower than that of HD filter.


Assuntos
Desnitrificação , Hidrodinâmica , Reatores Biológicos , Nitratos , Nitrogênio , RNA Ribossômico 16S/genética , Enxofre
3.
J Environ Manage ; 287: 112297, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33706088

RESUMO

Pyridine contamination poses a significant threat to human and environmental health. Due to the presence of nitrogen atom in the pyridine ring, the pi bond electrons are attracted toward it and make difficult for pyridine treatment with biological and chemical methods. In this study, coupling Fenton treatment with different biological process was designed to enhance pyridine biotransformation and further mineralization. After Fenton oxidation process optimized, pretreated pyridine was evaluated under three biological (anaerobic, aerobic and microaerobic) operating conditions. Under optimum Fenton oxidation, pyridine (30-75%) and TOC (5-25%) removal efficiencies were poor. Biological process alone also showed insignificant removal efficiency, particularly anaerobic (pyridine = 8.2%; TOC = 5.3%) culturing condition. However, combining Fenton pretreatment with biological process increased pyridine (93-99%) and TOC (87-93%) removals, suggesting that hydroxyl radical generated during Fenton oxidation enhanced pyridine hydroxylation and further mineralization in the biological (aerobic > microaerobic > anaerobic) process. Intermediates were analyzed with UPLC-MS and showed presence of maleic acid, pyruvic acid, glutaric dialdehyde, succinic semialdehyde and 4-formylamino-butyric acid. High-throughput sequencing analysis also indicated that Proteobacteria (35-43%) followed by Chloroflexi (10.6-24.3%) and Acidobacteria (8.0-29%) were the dominant phyla detected in the three biological treatment conditions. Co-existence of dominant genera under aerobic/microaerobic (Nitrospira > Dokdonella > Caldilinea) and anaerobic (Nitrospira > Caldilinea > Longilinea) systems most probably play significant role in biotransformation of pyridine and its intermediate products. Overall, integrating Fenton pretreatment with different biological process is a promising technology for pyridine treatment, especially the combined system enhanced anaerobic (>10 times) microbial pyridine biotransformation activity.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Biotransformação , Cromatografia Líquida , Humanos , Peróxido de Hidrogênio , Oxirredução , Piridinas , Espectrometria de Massas em Tandem , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
4.
Environ Res ; 186: 109522, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32325297

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are regarded as priority pollutants owing to their toxic, mutagenic and carcinogenic characteristics. Perylene is a kind of 5-ring PAH with biological toxicity, and classified as a class III carcinogen by the World Health Organization (WHO). Nowadays, some of its derivatives are often used as industrial pigments. Hence, urgent attention is highly needed to develop new and improved techniques for PAHs and their derivatives removal from the environment. In this study, Fenton oxidation process was hybridized with the biological (anaerobic and aerobic) treatments for the removal of perylene pigment from wastewater. The experiments were carried out by setting Fenton treatment system before and between the biological treatments. The biological results showed that COD removal efficiency reached 60% during 24 h HRT with an effluent COD concentration of 1567.78 mg/L. After the HRT increased to 48 h, the COD removal efficiency was slightly increased (67.9%). However, after combining Fenton treatment with biological treatment (Anaerobic-Fenton-Aerobic), the results revealed over 85% COD removal efficiency and the effluent concentration less than 600 mg/L which was selected as the better treatment configuration for the biological and chemical combined system. The microbial community analysis of activated sludge was carried out with high-throughput Illumina sequencing platform and results showed that Pseudomonas, Citrobacter and Methylocapsa were found to be the dominant genera detected in aerobic and anaerobic reactors. These dominant bacteria depicted that the community composition of the reactors for treating perylene pigments wastewater were similar to that of the soil contaminated by PAHs and the activated sludge from treating PAHs wastewater. Economic analysis results revealed that the reagent cost was relatively cheap, amounting to 10.64 yuan per kilogram COD. This study vividly demonstrated that combining Fenton treatment with biological treatment was efficient and cost-effective.


Assuntos
Perileno , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
5.
Environ Res ; 191: 110093, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853662

RESUMO

Carbon coated stainless-steel (SS) electrode has been suggested to be a powerful composite electrode with high conductivity, excellent biocompatibility and good mechanical strength, which is promising for scaling up the bioelectrochemical systems (BESs). However, the already reported carbon coating methods were independent on the production of SS material. Additional steps and investment of equipment for carbon coating are costly, and the industrialization of these carbon coating processes remains challenging. In this study, we report an industrializable carbon coating approach that was embedded into the production line of the SS wire, which was realized through a wire-drawing process with graphite emulsion as the lubricant and carbon source. We found the slide of SS wire through the dies was essential for the graphite coating in terms of loading amount and stability. When the graphite coated SS wire was prepared as the anode and operated in a BESs, the current density reached 1.761 ± 0.231 mA cm-2, which was 20 times higher than that without graphite coating. Biomass analysis was then conducted, confirming the superior bioelectrochemical performance was attributed to the improvement of biocompatibility by the graphite coating layer. Furthermore, graphite coating by the wire-drawing process was systematically compared with the existing methods, which showed a comparable or even better bioelectrochemical performance but with extremely low cost (0.036 $·m-2) and seconds level of the time consumption. Overall, this study offers a cost-effective and industrializable approach to preparing graphite coated SS electrode, which may open up great opportunities to promote the development of BESs at large scale.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Eletrodos , Lubrificantes , Aço Inoxidável
6.
Environ Sci Technol ; 53(3): 1545-1554, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30596484

RESUMO

Sulfur-based denitrification process has attracted increasing attentions because it does not rely on the external addition of organics and avoids the risk of COD exceeding the limit. Traditionally, limestone is commonly employed to maintain a neutral condition (SLAD process), but it may reduce the efficiency as the occupied zone by limestone cannot directly contribute to the denitrification. In this study, we propose a novel sulfur-based denitrification process by coupling with iron(II) carbonate ore (SICAD system). The ore was demonstrated to play roles as the buffer agent and additional electron donor. Moreover, the acid produced through sulfur driven denitrification was found to promote the Fe(II) leaching from the ore and likely extend the reaction zone from the surface to the liquid. As a result, more biomass was accumulated in the SICAD system compared with the controls (sulfur, iron(II) carbonate ore and SLAD systems). Owing to these synergistic effects of sulfur and iron(II) carbonate on denitrification, SICAD system showed much higher denitrification rate (up to 720.35 g·N/m3·d) and less accumulation of intermediates (NO2- and N2O) than the controls. Additionally, sulfate production in SICAD system was reduced. These findings offer great potential of SICAD system for practical use as a highly efficient postdenitrification process.


Assuntos
Desnitrificação , Compostos Ferrosos , Processos Autotróficos , Reatores Biológicos , Ferro , Nitratos , Enxofre
7.
Environ Sci Technol ; 53(3): 1501-1508, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30592608

RESUMO

Graphene oxide (GO) membranes have the potential to be next-generation membranes. However, the GO layer easily swells in water and risks shedding during the long-term filtration. Organic GO interlayer organic cross-linking agent was not resistant to oxidation, which limits the application scope of GO membrane. In this study, an inorganic cross-linked GO membrane was prepared via the reaction of sodium tetraborate and GO hydroxyl groups, and a -B-O-C- cross-linking bond was detected by X-ray photoelectron spectroscopy (XPS). Additionally, a new atomic force microscope scratch method to evaluate the cross-linking force of a nanoscale GO layer was proposed. It showed that the critical destructive load of the inorganic cross-linked GO membrane increased from 8 to 80 nN, which was a 10-fold increase from that of the nonlinked sample. During the NaOH/sodium dodecyl sulfate (SDS) destructive wash tests, morphology, flux and retention rate of inorganic cross-linked GO remained stable while the comparative membranes showed significant destruction. At the same time, based on the better oxidation resistance, organic membrane fouling was effectively controlled by the introduction of trace ·OH radicals. This study provides a new perspective for GO membrane preparation, interlayer cross-linking force testing and membrane fouling control.


Assuntos
Grafite , Boratos , Filtração , Membranas Artificiais , Óxidos
8.
J Immunol ; 198(8): 3149-3156, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28258196

RESUMO

Innate lymphoid cells (ILCs) are important regulators in various immune responses. The current paradigm states that all newly made ILCs originate from common lymphoid progenitors in the bone marrow. Id2, an inhibitor of E protein transcription factors, is indispensable for ILC differentiation. Unexpectedly, we found that ectopically expressing Id1 or deleting two E protein genes in the thymus drastically increased ILC2 counts in the thymus and other organs where ILC2 normally reside. Further evidence suggests a thymic origin of these mutant ILC2s. The mutant mice exhibit augmented spontaneous infiltration of eosinophils and heightened responses to papain in the lung and increased ability to expulse the helminth parasite, Nippostrongylus brasiliensis These results prompt the questions of whether the thymus naturally has the capacity to produce ILC2s and whether E proteins restrain such a potential. The abundance of ILC2s in Id1 transgenic mice also offers a unique opportunity for testing the biological functions of ILC2s.


Assuntos
Diferenciação Celular/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Células Progenitoras Linfoides/imunologia , Timo/imunologia , Animais , Linhagem da Célula/imunologia , Separação Celular , Regulação para Baixo , Citometria de Fluxo , Proteína 1 Inibidora de Diferenciação/imunologia , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Timo/citologia
9.
Environ Sci Technol ; 51(21): 12948-12955, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29025260

RESUMO

Biological removal of nitrate, a highly concerning contaminant, is limited when the aqueous environment lacks bioavailable electron donors. In this study, we demonstrated, for the first time, that bacteria can directly use the electrons originated from the photoelectrochemical process to carry out the denitrification. In such photoelectrotrophic denitrification (PEDeN) systems (denitrification biocathode coupling with TiO2 photoanode), nitrogen removal was verified solely relying on the illumination dosing without consuming additional chemical reductant or electric power. Under the UV illumination (30 mW·cm-2, wavelength at 380 ± 20 nm), nitrate reduction in PEDeN apparently followed the first-order kinetics with a constant of 0.13 ± 0.023 h-1. Nitrate was found to be almost completely converted to nitrogen gas at the end of batch test. Compared to the electrotrophic denitrification systems driven by organics (OEDeN, biocathode/acetate consuming bioanode) or electricity (EEDeN, biocathode/abiotic anode), the denitrification rate in PEDeN equaled that in OEDeN with a COD/N ratio of 9.0 or that in EEDeN with an applied voltage at 2.0 V. This study provides a sustainable technical approach for eliminating nitrate from water. PEDeN as a novel microbial metabolism may shed further light onto the role of sunlight played in the nitrogen cycling in certain semiconductive and conductive minerals-enriched aqueous environment.


Assuntos
Desnitrificação , Nitratos , Reatores Biológicos , Eletricidade , Nitrogênio , Óxidos de Nitrogênio
10.
J Immunol ; 193(2): 663-672, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24920844

RESUMO

T regulatory (Treg) cells play crucial roles in the regulation of cellular immunity. The development of Treg cells depends on signals from TCRs and IL-2Rs and is influenced by a variety of transcription factors. The basic helix-loop-helix proteins are known to influence TCR signaling thresholds. Whether this property impacts Treg differentiation is not understood. In this study, we interrogated the role of basic helix-loop-helix proteins in the production of Treg cells using the CD4 promoter-driven Id1 transgene. We found that Treg cells continued to accumulate as Id1 transgenic mice aged, resulting in a significant increase in Treg cell counts in the thymus as well as in the periphery compared with wild-type controls. Data from mixed bone marrow assays suggest that Id1 acts intrinsically on developing Treg cells. We made a connection between Id1 expression and CD28 costimulatory signaling because Id1 transgene expression facilitated the formation of Treg precursors in CD28(-/-) mice and the in vitro differentiation of Treg cells on thymic dendritic cells despite the blockade of costimulation by anti-CD80/CD86. Id1 expression also allowed in vitro Treg differentiation without anti-CD28 costimulation, which was at least in part due to enhanced production of IL-2. Notably, with full strength of costimulatory signals, however, Id1 expression caused modest but significant suppression of Treg induction. Finally, we demonstrate that Id1 transgenic mice were less susceptible to the induction of experimental autoimmune encephalomyelitis, thus illustrating the impact of Id1-mediated augmentation of Treg cell levels on cellular immunity.


Assuntos
Diferenciação Celular/imunologia , Proteína 1 Inibidora de Diferenciação/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Antígenos CD28/genética , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Interleucina-2/imunologia , Interleucina-2/metabolismo , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/metabolismo , Timo/imunologia , Timo/metabolismo
11.
J Environ Sci (China) ; 39: 198-207, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26899658

RESUMO

In this study, a novel scaled-up hybrid acidogenic bioreactor (HAB) was designed and adopted to evaluate the performance of azo dye (acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time (HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD (chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis (AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3%±2.5%, 86.2%±3.8% and 93.5%±1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS (61.1%±4.7%, 75.4%±5.0% and 82.1%±2.1%, respectively). Moreover, larger TCV/TV (total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2%±3.7% and 28.30±1.48 mA, respectively. They were significantly increased to 62.1%±2.0% and 34.55±0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater.


Assuntos
Compostos Azo/isolamento & purificação , Compostos Azo/metabolismo , Biocatálise , Reatores Biológicos , Eletrólise/instrumentação , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Aerobiose , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Corantes/isolamento & purificação , Corantes/metabolismo , Eletrodos , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/instrumentação , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo
12.
Int J Mol Sci ; 16(8): 16966-80, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26225956

RESUMO

Smoothened (Smo)-mediated Hedgehog (Hh) signaling pathway governs the patterning, morphogenesis and growth of many different regions within animal body plans. This study evaluated the effects of genetic variations of the bovine SMO gene on economically important body size traits in Chinese Qinchuan cattle. Altogether, eight single nucleotide polymorphisms (SNPs: 1-8) were identified and genotyped via direct sequencing covering most of the coding region and 3'UTR of the bovine SMO gene. Both the p.698Ser.>Ser. synonymous mutation resulted from SNP1 and the p.700Ser.>Pro. non-synonymous mutation caused by SNP2 mapped to the intracellular C-terminal tail of bovine Smo protein; the other six SNPs were non-coding variants located in the 3'UTR. The linkage disequilibrium was analyzed, and five haplotypes were discovered in 520 Qinchuan cattle. Association analyses showed that SNP2, SNP3/5, SNP4 and SNP6/7 were significantly associated with some body size traits (p < 0.05) except SNP1/8 (p > 0.05). Meanwhile, cattle with wild-type combined haplotype Hap1/Hap1 had significantly (p < 0.05) greater body length than those with Hap2/Hap2. Our results indicate that variations in the SMO gene could affect body size traits of Qinchuan cattle, and the wild-type haplotype Hap1 together with the wild-type alleles of these detected SNPs in the SMO gene could be used to breed cattle with superior body size traits. Therefore, our results could be helpful for marker-assisted selection in beef cattle breeding programs.


Assuntos
Tamanho Corporal/genética , Bovinos/anatomia & histologia , Bovinos/genética , Variação Genética , Característica Quantitativa Herdável , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Frequência do Gene/genética , Loci Gênicos , Marcadores Genéticos , Haplótipos/genética , Desequilíbrio de Ligação/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
13.
World J Gastrointest Surg ; 16(5): 1328-1335, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38817299

RESUMO

BACKGROUND: Few studies have investigated the expression of GLI1 and PTTG1 in patients undergoing radical surgery for colorectal carcinoma (CRC) and their association with lymph node metastasis (LNM). Therefore, more relevant studies and analyses need to be conducted. AIM: To explore GLI1 and PTTG1 expression in patients undergoing radical surgery for CRC and their correlation with LNM. METHODS: This study selected 103 patients with CRC admitted to our hospital between April 2020 and April 2023. Sample specimens of CRC and adjacent tissues were collected to determine the positive rates and expression levels of GLI1 and PTTG1. The correlation of the two genes with patients' clinicopathological data (e.g., LNM) was explored, and differences in GLI1 and PTTG1 expression between patients with LNM and those without were analyzed. Receiver operating characteristic (ROC) curves were plotted to evaluate the predictive potential of the two genes for LNM in patients with CRC. RESULTS: Significantly higher positive rates and expression levels of GLI1 and PTTG1 were observed in CRC tissue samples compared with adjacent tissues. GLI1 and PTTG1 were strongly linked to LNM in patients undergoing radical surgery for CRC, with higher GLI1 and PTTG1 levels found in patients with LNM than in those without. The areas under the ROC curve of GLI1 and PTTG1 in assessing LNM in patients with CRC were 0.824 and 0.811, respectively. CONCLUSION: GLI1 and PTTG1 expression was upregulated in patients undergoing radical surgery for CRC and are significantly related to LNM in these patients. Moreover, high GLI1 and PTTG1 expression can indicate LNM in patients with CRC undergoing radical surgery. The expression of both genes has certain diagnostic and therapeutic significance.

14.
Sci Total Environ ; 947: 174469, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972419

RESUMO

Understanding the transformation process of dissolved organic matter (DOM) in the sewer is imperative for comprehending material circulation and energy flow within the sewer. The machine learning (ML) model provides a feasible way to comprehend and simulate the DOM transformation process in the sewer. In contrast, the model accuracy is limited by data restriction. In this study, a novel framework by integrating generative adversarial network algorithm-machine learning models (GAN-ML) was established to overcome the drawbacks caused by the data restriction in the simulation of the DOM transformation process, and humification index (HIX) was selected as the output variable to evaluate the model performance. Results indicate that the GAN algorithm's virtual dataset could generally enhance the simulation performance of regression models, deep learning models, and ensemble models for the DOM transformation process. The highest prediction accuracy on HIX (R2 of 0.5389 and RMSE of 0.0273) was achieved by the adaptive boosting model which belongs to ensemble models trained by the virtual dataset of 1000 samples. Interpretability analysis revealed that dissolved oxygen (DO) and pH emerge as critical factors warranting attention for the future development of management strategies to regulate the DOM transformation process in sewers. The integrated framework proposed a potential approach for the comprehensive understanding and high-precision simulation of the DOM transformation process, paving the way for advancing sewer management strategy under data restriction.

15.
Water Res ; 258: 121778, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795549

RESUMO

Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.


Assuntos
Nitrogênio , Oxirredução , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo
16.
Water Res ; 259: 121851, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851110

RESUMO

Overuse of antibiotics has led to their existence in nitrogen-containing water. The impacts of antibiotics on bio-denitrification and the metabolic response of denitrifiers to antibiotics are unclear. We systematically analyzed the effect of ciprofloxacin (CIP) on bio-denitrification and found that 5 mg/L CIP greatly inhibited denitrification with a model denitrifier (Paracoccus denitrificans). Nitrate reduction decreased by 32.89 % and nitrous oxide emission increased by 75.53 %. The balance analysis of carbon and nitrogen metabolism during denitrification showed that CIP exposure blocked electron transfer and reduced the flow of substrate metabolism used for denitrification. Proteomics results showed that CIP exposure induced denitrifiers to use the pentose phosphate pathway more for substrate metabolism. This caused a substrate preference to generate NADPH to prevent cellular damage rather than NADH for denitrification. Notably, despite denitrifiers having antioxidant defenses, they could not completely prevent oxidative damage caused by CIP exposure. The effect of CIP exposure on denitrifiers after removal of extracellular polymeric substances (EPS) demonstrated that EPS around denitrifiers formed a barrier against CIP. Fluorescence and infrared spectroscopy revealed that the binding effect of proteins in EPS to CIP prevented damage. This study shows that denitrifiers resist antibiotic stress through different intracellular and extracellular defense strategies.


Assuntos
Antibacterianos , Ciprofloxacina , Desnitrificação , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Paracoccus denitrificans/metabolismo
17.
Biochem Biophys Res Commun ; 436(1): 47-52, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23707719

RESUMO

Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïve CD4+ cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.


Assuntos
Linfócitos T CD4-Positivos/citologia , Regulação da Expressão Gênica , Proteína 1 Inibidora de Diferenciação/biossíntese , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Proliferação de Células , Separação Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Citometria de Fluxo , Interleucina-2/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo
18.
Tumour Biol ; 34(5): 3083-91, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23754447

RESUMO

Cytochrome P450 (CYP) 2C19 metabolizes many promutagens and procarcinogens to biologically active metabolites, which strongly promote proliferation of cancer cells in vitro and in vivo. The CYP2C19 gene exhibits several genetic polymorphisms that are thought to play a major role in inter-individual variability in drug response, drug-xenobiotic interactions, and in cancer susceptibility. Two polymorphisms of the CYP2C19 gene (CYP2C19*2, CYP2C19*3) which was associated with reduced enzyme activity have been investigated extensively digestive tract cancer; however, these studies have yielded contradictory results. To clarify this inconsistency, we performed this meta-analysis including 15 case-control studies with a total of 3,252 cases and 6,269 controls. Overall, we found significant association between CYP2C19*2 and digestive tract cancer (OR = 1.27, 95 % CI, 1.07-1.51, P = 0.007) while no significant results were found for CYP2C19*3. Potential sources of heterogeneity including cancer types, ethnicity, source of control, and sample size of study were assessed. In the subgroup analyses by cancer types, significant association was detected only in esophagus cancer for CYP2C19*2. When stratified by ethnicity, significantly increased risks were found for the CYP2C19*2 polymorphism among Asians. This meta-analysis demonstrated that the CYP2C19*2 polymorphism is a risk factor for developing digestive tract cancer. However, additional very large-scale studies are warranted to provide conclusive evidence on the effects of the CYP2C19 gene on risk of digestive tract cancer.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Neoplasias Gastrointestinais/genética , Polimorfismo Genético , Estudos de Casos e Controles , Citocromo P-450 CYP2C19 , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Razão de Chances , Fatores de Risco
19.
Bioresour Technol ; 367: 128238, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334869

RESUMO

The effect of particle morphology on denitrification performance in element sulfur-based denitrification (ESDeN) packed-bed process is a gap. In this study, three different types of commercial sulfur particles were selected to build the ESDeN reactors. The results showed the reactors filled with rougher sulfur particles took shorter time to reach stable denitrification performance in the start-up stage. The reactors filled with cap-shape sulfur particles received the maximum nitrate removal rate of 849.49 ± 79.29 g N m-3 d-1 at empty bed contact time of 0.50 h, which was 2.34 times higher than that with ball-shape sulfur particles in the steady stage. The superior denitrification performance in the cap-shape particles set linked to its larger effective volumetric surface area (ωe, 1.67 times larger) and to the longer actual hydraulic retention time (AHRT, 1.80 times longer). This study extends the knowledge of the dependency of sulfur particle properties on denitrification performance in ESDeN packed-bed reactor.


Assuntos
Reatores Biológicos , Desnitrificação , Enxofre , Nitratos , Processos Autotróficos , Nitrogênio
20.
Water Res ; 246: 120676, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806124

RESUMO

Intelligent control of wastewater treatment plants (WWTPs) has the potential to reduce energy consumption and greenhouse gas emissions significantly. Machine learning (ML) provides a promising solution to handle the increasing amount and complexity of generated data. However, relationships between the features of wastewater datasets are generally inconspicuous, which hinders the application of artificial intelligence (AI) in WWTPs intelligent control. In this study, we develop an automatic framework of feature engineering based on variation sliding layer (VSL) to control the air demand precisely. Results demonstrated that using VSL in classic machine learning, deep learning, and ensemble learning could significantly improve the efficiency of aeration intelligent control in WWTPs. Bayesian regression and ensemble learning achieved the highest accuracy for predicting air demand. The developed models with VSL-ML models were also successfully implemented under the full-scale wastewater treatment plant, showing a 16.12 % reduction in demand compared to conventional aeration control of preset dissolved oxygen (DO) and feedback to the blower. The VSL-ML models showed great potential to be applied for the precision air demand prediction and control. The package as a tripartite library of Python is called wwtpai, which is freely accessible on GitHub and CSDN to remove technical barriers to the application of AI technology in WWTPs.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Inteligência Artificial , Teorema de Bayes , Aprendizado de Máquina , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa