Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
PLoS Pathog ; 19(12): e1011808, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048324

RESUMO

Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and liver cancer, despite strong prevention and treatment efforts. The study of the epigenetic modification of HBV has become a research hotspot, including the N6-methyladenosine (m6A) modification of HBV RNA, which plays complex roles in the HBV life cycle. In addition to m6A modification, 5-methylcytosine (m5C) is another major modification of eukaryotic mRNA. In this study, we explored the roles of m5C methyltransferase and demethyltransferase in the HBV life cycle. The results showed that m5C methyltransferase NSUN2 deficiency could negatively regulate the expression of HBV while m5C demethyltransferase TET2 deficiency positively regulates the expression of HBV. Subsequently, we combined both in vitro bisulfite sequencing and high-throughput bisulfite sequencing methods to determine the distribution and stoichiometry of m5C modification in HBV RNA. Two sites: C2017 and C131 with the highest-ranking methylation rates were identified, and mutations at these two sites could lead to the decreased expression and replication of HBV, while the mutation of the "fake" m5C site had no effect. Mechanistically, NSUN2-mediated m5C modification promotes the stability of HBV RNA. In addition, compared with wild-type HepG2-NTCP cells and primary human hepatocytes, the replication level of HBV after NSUN2 knockdown decreased, and the ability of the mutant virus to infect and replicate in wild-type HepG2-NTCP cells and PHHs was substantially impaired. Similar results were found in the experiments using C57BL/6JGpt-Nsun2+/- mice. Interestingly, we also found that HBV expression and core protein promoted the endogenous expression of NSUN2, which implied a positive feedback loop. In summary, our study provides an accurate and high-resolution m5C profile of HBV RNA and reveals that NSUN2-mediated m5C modification of HBV RNA positively regulates HBV replication by maintaining RNA stability.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Animais , Humanos , Camundongos , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Metiltransferases/genética , Camundongos Endogâmicos C57BL , RNA
2.
Drug Resist Updat ; 73: 101056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277755

RESUMO

BACKGROUND: The treatment of dopamine agonists (DA) resistant prolactinomas remains a formidable challenge, as the mechanism of resistance is still unclear, and there are currently no viable alternative drug therapies available. This study seeks to investigate the mechanism of DA resistance in prolactinomas and identify new potentially effective drugs. METHODS: To explore the mechanism of DA resistance in prolactinomas, this study conducted transcriptome sequencing analysis on 27 cases of DA-resistant prolactinomas and 10 cases of sensitive prolactinomas. In addition, single-cell sequencing analysis was performed on 3 cases of DA-resistant prolactinomas and 3 cases of sensitive prolactinomas. Furthermore, to screen for potential therapeutic drugs, the study successfully established an organoids model for DA-resistant prolactinomas and screened 180 small molecule compounds using 8 organoids. The efficacy of the identified drugs was verified through various assays, including CCK-8, colony formation, CTG, and flow cytometry, and their mechanisms of action were confirmed through WB and IHC. The effectiveness of the identified drugs was evaluated both in vitro and in vivo. RESULTS: The results of transcriptome sequencing and single-cell sequencing analyses showed that DA resistance in prolactinomas is associated with the upregulation of the Focal Adhesion (FA) signaling pathway. Additionally, immunohistochemical validation revealed that FAK and Paxillin were significantly upregulated in DA-resistant prolactinomas. Screening of 180 small molecule compounds using 8 organoids identified Genistein as a potentially effective drug for DA-resistant prolactinomas. Experimental validation demonstrated that Genistein inhibited the proliferation of pituitary tumor cell lines and organoids and promoted apoptosis in pituitary tumor cells. Moreover, both the cell sequencing results and WB validation results of the drug-treated cells indicated that Genistein exerts its anti-tumor effect by inhibiting the FA pathway. In vivo, experiments also showed that Genistein can inhibit subcutaneous tumor formation. CONCLUSION: DA resistance in prolactinomas is associated with upregulation of the Focal Adhesion (FA) signaling pathway, and Genistein can exert its anti-tumor effect by inhibiting the expression of the FA pathway.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Prolactinoma , Humanos , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Prolactinoma/tratamento farmacológico , Prolactinoma/genética , Prolactinoma/metabolismo , Prolactina/metabolismo , Prolactina/uso terapêutico , Genisteína/uso terapêutico , Tumores Neuroendócrinos/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética
3.
J Cell Mol Med ; 28(4): e18081, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358034

RESUMO

Atractylodes macrocephala III (ATL III), with anti-inflammatory and antitumor effects, is the main compound of Atractylodes macrocephala. Whether ATL III has an effect on cervical cancer and the specific mechanism are still unclear. Here, we investigated the effects of ATL III on cervical cancer cells at different concentrations and found that ATL III downregulates insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), which was found to be highly expressed in cervical cancer tissue by RNA-Seq. In this study, we found that ATL III promotes apoptosis and regulates epithelial-mesenchymal transition (EMT) in cervical cancer cells (HeLa and SiHa cells) and that IGF2BP3 is a common target gene of ATL III in HeLa and SiHa cells. The expression level of IGF2BP3 in cervical cancer cells was proportional to their migration and invasion abilities. This was verified by transfection of cells with a small interfering RNA and an IGF2BP3 overexpression plasmid. After ATL III treatment, the migration and invasion abilities of cervical cancer cells were obviously reduced, but these effects were attenuated after overexpression of IGF2BP3. In addition, the transcription factor IGF2BP3 was predicted by the JASPAR system. After intersection with our sequencing results, we verified the promotional effect of ETV5 (ETS translocation variant 5) on IGF2BP3 and found that ALT III inhibited ETV5. In general, our research showed that ATL III inhibits the migration and invasion of cervical cancer cells by regulating IGF2BP3 through ETV5.


Assuntos
Atractylodes , Neoplasias do Colo do Útero , Feminino , Humanos , Atractylodes/química , Neoplasias do Colo do Útero/patologia , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/genética
4.
Am J Nephrol ; 55(3): 345-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330925

RESUMO

INTRODUCTION: The aim of this study was to explore the renoprotective effects of Klotho on podocyte injury mediated by complement activation and autoantibodies in idiopathic membranous nephropathy (IMN). METHODS: Rat passive Heymann nephritis (PHN) was induced as an IMN model. Urine protein levels, serum biochemistry, kidney histology, and podocyte marker levels were assessed. In vitro, sublytic podocyte injury was induced by C5b-9. The expression of Klotho, transient receptor potential channel 6 (TRPC6), and cathepsin L (CatL); its substrate synaptopodin; and the intracellular Ca2+ concentration were detected via immunofluorescence. RhoA/ROCK pathway activity was measured by an activity quantitative detection kit, and the protein expression of phosphorylated-LIMK1 (p-LIMK1) and p-cofilin in podocytes was detected via Western blotting. Klotho knockdown and overexpression were performed to evaluate its role in regulating the TRPC6/CatL pathway. RESULTS: PHN rats exhibited proteinuria, podocyte foot process effacement, decreased Klotho and Synaptopodin levels, and increased TRPC6 and CatL expression. The RhoA/ROCK pathway was activated by the increased phosphorylation of LIMK1 and cofilin. Similar changes were observed in C5b-9-injured podocytes. Klotho knockdown exacerbated podocyte injury, while Klotho overexpression partially ameliorated podocyte injury. CONCLUSION: Klotho may protect against podocyte injury in IMN patients by inhibiting the TRPC6/CatL pathway. Klotho is a potential target for reducing proteinuria in IMN patients.


Assuntos
Citoesqueleto de Actina , Catepsina L , Glomerulonefrite Membranosa , Glucuronidase , Proteínas Klotho , Podócitos , Transdução de Sinais , Canal de Cátion TRPC6 , Podócitos/metabolismo , Podócitos/patologia , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Animais , Glucuronidase/metabolismo , Ratos , Canal de Cátion TRPC6/metabolismo , Masculino , Citoesqueleto de Actina/metabolismo , Catepsina L/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Humanos , Modelos Animais de Doenças , Proteínas dos Microfilamentos/metabolismo , Proteinúria/metabolismo , Ratos Sprague-Dawley , Quinases Associadas a rho/metabolismo , Canais de Cátion TRPC/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo
5.
Cell ; 138(2): 245-56, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19632176

RESUMO

The evolution of prostate cancer from an androgen-dependent state to one that is androgen-independent marks its lethal progression. The androgen receptor (AR) is essential in both, though its function in androgen-independent cancers is poorly understood. We have defined the direct AR-dependent target genes in both androgen-dependent and -independent cancer cells by generating AR-dependent gene expression profiles and AR cistromes. In contrast to what is found in androgen-dependent cells, AR selectively upregulates M-phase cell-cycle genes in androgen-independent cells, including UBE2C, a gene that inactivates the M-phase checkpoint. We find that epigenetic marks at the UBE2C enhancer, notably histone H3K4 methylation and FoxA1 transcription factor binding, are present in androgen-independent cells and direct AR-enhancer binding and UBE2C activation. Thus, the role of AR in androgen-independent cancer cells is not to direct the androgen-dependent gene expression program without androgen, but rather to execute a distinct program resulting in androgen-independent growth.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Androgênios/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Histonas/metabolismo , Humanos , Masculino , Neoplasias da Próstata/genética , Ativação Transcricional , Enzimas de Conjugação de Ubiquitina/metabolismo
6.
Inhal Toxicol ; : 1-10, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776440

RESUMO

OBJECTIVE: PM2.5 is closely linked to vascular endothelial injury and has emerged as a major threat to human health. Our previous research indicated that exposure to PM2.5 induced an increased release of miR-421 from the bronchial epithelium. However, the role of miR-421 in PM2.5-induced endothelial injury remains elusive. MATERIALS AND METHODS: We utilized a subacute PM2.5-exposure model in mice in vivo and an acute injury cell model in vitro to simulate PM2.5-associated endothelial injury. We also used quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and immunohistochemistry to investigate the role of miR-421 in PM2.5-induced endothelial injury. RESULTS: Our findings reveal that inhibition of miR-421 attenuated PM2.5-induced endothelial injury and hypertension. Mechanistically, miR-421 inhibited the expression of angiotensin-converting enzyme 2 (ACE2) in human umbilical vein endothelial cells and upregulated the expression of the downstream molecule inducible nitric oxide synthase (iNOS), thereby exacerbating PM2.5-induced endothelial injury. CONCLUSIONS: Our results indicate that PM2.5 exposure facilitates crosstalk between bronchial epithelial and endothelial cells via miR-421/ACE2/iNOS signaling pathway, mediating endothelial damage and hypertension. MiR-421 inhibition may offer a new strategy for the prevention and treatment of PM2.5-induced vascular endothelial injury.

7.
J Neuroinflammation ; 20(1): 97, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098609

RESUMO

Ischemic stroke is characterized by the presence of reactive microglia. However, its precise involvement in stroke etiology is still unknown. We used metabolic profiling and showed that chemokine like factor 1 (CKLF1) causes acute microglial inflammation and metabolic reprogramming from oxidative phosphorylation to glycolysis, which was reliant on the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-hypoxia inducible factor 1α (HIF-1α) signaling pathway. Once activated, microglia enter a chronic tolerant state as a result of widespread energy metabolism abnormalities, which reduces immunological responses, including cytokine release and phagocytosis. Metabolically dysfunctional microglia were also found in mice using genome-wide RNA sequencing after chronic administration of CKLF1, and there was a decrease in the inflammatory response. Finally, we showed that the loss of CKLF1 reversed the defective immune response of microglia, as indicated by the maintenance its phagocytosis to neutrophils, thereby mitigating the long-term outcomes of ischemic stroke. Overall, CKLF1 plays a crucial role in the relationship between microglial metabolic status and immune function in stroke, which prepares a potential therapeutic strategy for ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Citocinas/metabolismo , Tolerância Imunológica , AVC Isquêmico/metabolismo , Mamíferos/metabolismo , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo
8.
Mol Pharm ; 20(1): 395-408, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36469444

RESUMO

To evaluate the influence of solubility and permeability on the pharmacokinetic prediction performance of orally administered drugs using avirtual bioequivalence (VBE) model, a total of 23 orally administered drugs covering Biopharmaceutics Classification System (BCS) classes 1-4 were selected. A VBE model (i.e., a physiologically based pharmacokinetic model integrated with dissolution data) based on a B2O simulator was applied for pharmacokinetic (PK) prediction in a virtual population. Parameter sensitivity analysis was used for input parameter selection. The predictive performances of PK parameters (i.e., AUC0-t, Cmax, and Tmax), PK profiles, and bioequivalence (BE) results were evaluated using the twofold error, average fold error (AFE), absolute average fold error (AAFE), and BE reassessment metrics. All models successfully simulated the mean PK profiles, with AAFE < 2 and AFE ranging from 0.58 to 1.66. As for the PK parameters, except for the time of peak concentration, Tmax, of isosorbide mononitrate, other simulated PK parameters were all within a twofold error. The simulated PK behaviors were comparable to the observed ones, both for test (T) and reference (R) products, and the simulated T/R arithmetic mean ratios were all within 0.88-1.16 of the observed values. These four evaluation metrics were distributed equally among BCS class 1-4 drugs. The VBE model showed powerful performance to predict the PK behavior of orally administered drugs with various combinations of solubility and permeability, irrespective of the BCS category.


Assuntos
Benchmarking , Biofarmácia , Equivalência Terapêutica , Biofarmácia/métodos , Solubilidade , Permeabilidade , Modelos Biológicos , Simulação por Computador
9.
Nucleic Acids Res ; 49(5): e26, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33330921

RESUMO

Upstream open reading frame (uORF) translation disrupts scanning 43S flux on mRNA and modulates main open reading frame (mORF) translation efficiency. Current tools, however, have limited access to ribosome dynamics in both upstream and main ORFs of an mRNA. Here, we develop a new two-color in vitro fluorescence assay, Smart-ORF, that monitors individual uORF and mORF translation events in real-time with single-molecule resolution. We demonstrate the utility of Smart-ORF by applying it to uORF-encoded arginine attenuator peptide (AAP)-mediated translational regulation. The method enabled quantification of uORF and mORF initiation efficiencies, 80S dwell time, polysome formation, and the correlation between uORF and mORF translation dynamics. Smart-ORF revealed that AAP-mediated 80S stalling in the uORF stimulates the uORF initiation efficiency and promotes clustering of slower uORF-translating ribosomes. This technology provides a new tool that can reveal previously uncharacterized dynamics of uORF-containing mRNA translation.


Assuntos
Fases de Leitura Aberta , Biossíntese de Proteínas , Ribossomos/metabolismo , Imagem Individual de Molécula/métodos , Arginina/metabolismo , Sistema Livre de Células , Regulação da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo
10.
Adv Exp Med Biol ; 1418: 3-14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603269

RESUMO

Extracellular vesicles (EVs) are considered as cargo and mediate intercellular communication. As natural biological nanoparticles, EVs can be secreted by almost all kinds of cells and exist in biofluids such as milk, urine, blood, etc. In the past decades, several methods have been utilized to isolate EVs from cell culture medium, biofluids, and tissues. Here in this chapter, we summarized conventional and novel methods and fundamental procedures of EVs extraction and purification from different biofluids (plasma, urine, milk, and saliva) and tissues (brain, intestinal tissue, muscles, and heart). The present section also discusses how to choose appropriate methods to extract EVs from tissues based on downstream analysis. This chapter will expand the horizons of EVs isolation and purification from different mediums.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Animais , Leite , Transporte Biológico , Encéfalo
11.
Ren Fail ; 45(2): 2253924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724538

RESUMO

Membranous nephropathy (MN) is a glomerular disease. Crocin is isolated from saffron and gardenia. Its antioxidant, anti-inflammatory, anti-hyperlipidemic, anti-atherosclerotic, anti-tumor, free-radical scavenging and neuroprotective activities have been well established. We investigated the biological functions of crocin and its related mechanisms in MN. We established an experimental passive Heymann nephritis (PHN) rat model induced by anti-Fx1A antiserum. The rats were divided into sham, sham + crocin, PHN, PHN + crocin, and PHN + enalapril groups. Blood samples and kidneys of rats were collected for estimation of biochemical parameters in serum and oxidative stress indicators in kidney tissues. Histopathological changes of renal tissues were evaluated by hematoxylin and eosin, periodic acid-Schiff (PAS) and Masson staining. The podocyte number was estimated by immunohistochemistry staining of Wilms tumor type 1 (WT1). The deposition of rat anti-rabbit IgG antibodies, complement C3 and C5b-9 was detected by immunofluorescence staining. Western blotting was performed to measure the levels of Sirtuin 1 (Sirt1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and apoptosis-related proteins. The total cholesterol, triglycerides, creatinine, blood urea nitrogen, urine volume and urine albumin of PMN rats were significantly reduced by crocin. Additionally, crocin attenuated the renal histopathological changes. Moreover, the oxidative stress damage and podocyte loss and immune injury were relieved by crocin in PHN rats. Mechanistically, crocin administration activated the Sirt1/Nrf2/HO-1 pathways. The results provide a scientific basis that crocin could alleviate MN by inhibiting immune injury and podocyte damage through activating the Sirt1/Nrf2/HO-1 pathways.


Assuntos
Glomerulonefrite Membranosa , Neoplasias Renais , Tumor de Wilms , Animais , Ratos , Glomerulonefrite Membranosa/tratamento farmacológico , Sirtuína 1 , Fator 2 Relacionado a NF-E2 , Heme Oxigenase-1 , Rim , Transdução de Sinais , Autofagia
12.
Cancer Immunol Immunother ; 71(5): 1233-1245, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34647152

RESUMO

CONTEXT: Pituitary adenoma (PA) is a common intracranial tumor. The evidence indicates that the tumor immune microenvironment (TIME) is associated with PA and that the intestinal flora influences other tumors' growth through interacting with the TIME. However, how the intestinal microbial flora contributes to the development of PA through the immune response is unknown. OBJECTIVE AND METHODS: Here we used high-throughput Illumina MiSeq sequencing targeting the V3-V4 region of the 16S ribosomal RNA gene to investigate the intestinal flora of patients with growth hormone-secreting pituitary adenoma (GHPA), nonfunctional pituitary adenoma (NFPA), and healthy controls. We determined their effects on tumor growth and the TIME. Fecal microbiota transplantation (FMT) was performed after adoptive transfer via peripheral blood mononuclear cells to tumor-bearing nude mice, which allowed the study of the immune response. RESULT: We discovered differences in the structures and quantities of intestinal flora between patients with GHPA, patients with NFPA, and healthy controls. After FMT, the intestinal flora of GHPA patients promoted the growth of tumors in mouse models. The number of programmed cell death ligand 1 (PD-L1)-positive cells increased in tumor tissues as well as the extent of infiltration of CD8+ cells. Increased numbers of CD3+CD8+ cells and increased levels of sPD-L1 were detected in peripheral blood. CONCLUSION: These findings indicated that the intestinal flora of patients with GHPA promoted tumor growth and that the immune system may mediate this change.


Assuntos
Adenoma , Microbioma Gastrointestinal , Adenoma Hipofisário Secretor de Hormônio do Crescimento , Neoplasias Hipofisárias , Adenoma/metabolismo , Animais , Antígeno B7-H1/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Nus , Microambiente Tumoral
13.
Pharmacol Res ; 182: 106349, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835367

RESUMO

Rare diseases refer to diseases with very low prevalence. Along with the support of national policies and improvement of research capability, a new landscape for orphan drug is emerging in China. To identity unmet clinical needs and provide insight on the development of orphan drugs, we reviewed the changes over time of orphan drug clinical trials in China from 2012 to 2022. A total of 261 trials of 40 drugs were initiated, of which 66.3% trials were sponsored by Chinese local pharmaceutical enterprises. Among the 261 trials, chemical drugs (about 63.6%) and biological products (35.6%) account for the high proportions, and traditional Chinese medicine (0.8%) was the least; the indications mainly focused on homozygous hypercholesterolemia, hemophilia, multiple sclerosis and idiopathic pulmonary fibrosis; single-arm study design was applied to 50% of the clinical trials, with an average sample size of 52 participants. Additionally, totally 122 trials were completed by January 2022, of which the average duration time was 15.7 months for new drug and 3.5 months for generic drug, respectively. The trends over time illustrated that remarkable progress has been achieved in development of orphan drugs in China since 2012. Given the large patient pool and the rising capability of innovation, it is believed that China will contribute more to the global drug pipelines for rare diseases.


Assuntos
Produção de Droga sem Interesse Comercial , Doenças Raras , China , Humanos , Doenças Raras/tratamento farmacológico
14.
Inorg Chem ; 61(23): 8662-8669, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35617168

RESUMO

Cluster-based framework metal iodides have diverse structures and excellent luminescence properties, and show promising applications in sensing and solid-state lighting. However, the design and synthesis of these materials remain great challenges because excess I- ions introduced into the synthesis systems decrease the condensation degree of M-I units. In this work, a new strategy is developed to control the condensation behavior of Ag-I units, and a new silver-rich cluster-based framework iodide [DabcoAg8I6(SPh)2]n (1) (Dabco = 1,4-diazabicyclo [2.2.2] octane) has been synthesized under solvothermal conditions in the presence of silver thiophenolate (AgSPh)n. Compound 1 features a three-dimensional (3-D) cluster-based framework with a pillared layer structure composed of cationic [Ag8I6]2+ clusters bridged by SPh- and Dabco, and displays low-temperature dual emission and luminescence thermochromism.

15.
Acta Pharmacol Sin ; 43(1): 1-9, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33772140

RESUMO

Recent evidence shows that when ischemic stroke (IS) occurs, the BBB would be destructed, thereby promoting the immune cells to migrate into the brain, suggesting that the immune responses can play a vital role in the pathology of IS. As an essential subpopulation of immunosuppressive T cells, regulatory T (Treg) cells are involved in maintaining immune homeostasis and suppressing immune responses in the pathophysiological conditions of IS. During the past decades, the regulatory role of Treg cells has attracted the interest of numerous researchers. However, whether they are beneficial or detrimental to the outcomes of IS remains controversial. Moreover, Treg cells exert distinctive effects in the different stages of IS. Therefore, it is urgent to elucidate how Treg cells modulate the immune responses induced by IS. In this review, we describe how Treg cells fluctuate and play a role in the regulation of immune responses after IS in both experimental animals and humans, and summarize their biological functions and mechanisms in both CNS and periphery. We also discuss how Treg cells participate in poststroke inflammation and immunodepression and the potential of Treg cells as a novel therapeutic approach.


Assuntos
Isquemia Encefálica/imunologia , Acidente Vascular Cerebral/imunologia , Linfócitos T Reguladores/imunologia , Animais , Humanos
16.
Part Fibre Toxicol ; 19(1): 64, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242005

RESUMO

BACKGROUND: Airborne fine particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) pollution is associated with the prevalence of respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease. In patients with those diseases, circulating asymmetric dimethylarginine (ADMA) levels are increased, which contributes to airway nitric oxide deficiency, oxidative stress and inflammation. Overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1), an enzyme degrading ADMA, exerts protective effects in animal models. However, the impact of DDAH1/ADMA on PM2.5-induced lung injury has not been investigated. METHODS: Ddah1-/- and DDAH1-transgenic mice, as well as their respective wild-type (WT) littermates, were exposed to either filtered air or airborne PM2.5 (mean daily concentration ~ 50 µg/m3) for 6 months through a whole-body exposure system. Mice were also acutely exposed to 10 mg/kg PM2.5 and/or exogenous ADMA (2 mg/kg) via intratracheal instillation every other day for 2 weeks. Inflammatory response, oxidative stress and related gene expressions in the lungs were examined. In addition, RAW264.7 cells were exposed to PM2.5 and/or ADMA and the changes in intracellular oxidative stress and inflammatory response were determined. RESULTS: Ddah1-/- mice developed more severe lung injury than WT mice after long-term PM2.5 exposure, which was associated with greater induction of pulmonary oxidative stress and inflammation. In the lungs of PM2.5-exposed mice, Ddah1 deficiency increased protein expression of p-p65, iNOS and Bax, and decreased protein expression of Bcl-2, SOD1 and peroxiredoxin 4. Conversely, DDAH1 overexpression significantly alleviated lung injury, attenuated pulmonary oxidative stress and inflammation, and exerted opposite effects on those proteins in PM2.5-exposed mice. In addition, exogenous ADMA administration could mimic the effect of Ddah1 deficiency on PM2.5-induced lung injury, oxidative stress and inflammation. In PM2.5-exposed macrophages, ADMA aggravated the inflammatory response and oxidative stress in an iNOS-dependent manner. CONCLUSION: Our data revealed that DDAH1 has a marked protective effect on long-term PM2.5 exposure-induced lung injury.


Assuntos
Lesão Pulmonar , Óxido Nítrico , Amidoidrolases , Animais , Inflamação/induzido quimicamente , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/prevenção & controle , Camundongos , Camundongos Transgênicos , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Estresse Oxidativo , Material Particulado/toxicidade , Peroxirredoxinas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Superóxido Dismutase-1/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
Nucleic Acids Res ; 48(1): e6, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31722415

RESUMO

Eukaryotic mRNAs are predominantly translated via the cap-dependent pathway. Initiation is a rate-limiting step in cap-dependent translation and is the main target of translational control mechanisms. There is a lack of high-resolution techniques for characterizing the cap-dependent initiation kinetics. Here, we report an in vitro single-molecule assay that allows characterization of both initiation and peptide chain elongation kinetics for cap-dependent translation. Surprisingly, the histogram of the first-round initiation time is highly asymmetrical and spans a large time range that is several-fold greater than the average peptide synthesis time in translation reactions with a firefly luciferase-encoding mRNA. Both the histogram and single-molecule trajectories reveal an unexpected high-degree of asynchrony in translation activity between mRNA molecules. Furthermore, by inserting a small stem-loop (ΔG = -4.8 kcal/mol) in the middle of the mRNA 5' untranslated region (UTR), our assay robustly detects small changes in budding yeast initiation kinetics, which could not be resolved by bulk luminescence kinetics. Lastly, we demonstrate the general applicability of this assay to distinct cell-free translation systems by using extracts prepared from budding yeast, wheat germ, and rabbit reticulocyte lysates. This assay should facilitate mechanistic studies of eukaryotic cap-dependent translation initiation and translational control.


Assuntos
Bioensaio , Iniciação Traducional da Cadeia Peptídica , Capuzes de RNA/genética , Ribossomos/genética , Imagem Individual de Molécula/métodos , Animais , Carbocianinas/química , Carbocianinas/metabolismo , Misturas Complexas/química , Misturas Complexas/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Cinética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Capuzes de RNA/metabolismo , Coelhos , Reticulócitos/química , Reticulócitos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Triticum/química , Triticum/metabolismo
18.
Molecules ; 27(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431857

RESUMO

The present study aims to analyze the structural characterization and antioxidant activity of a novel exopolysaccharide from Rhizopus nigricans (EPS2-1). For this purpose, EPS2-1 was purified through DEAE-52, Sephadex G-100, and Sephadex G-75 chromatography. The structural characterization of EPS2-1 was analyzed using high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), methylation analysis, nuclear magnetic resonance (NMR) spectra, transmission electron microscope (TEM), and atomic force microscope (AFM). The results revealed that EPS2-1 is composed of mannose (Man), galactose (Gal), glucose (Glc), arabinose (Ara), and Fucose (Fuc), and possesses a molecular weight of 32.803 kDa. The backbone of EPS2-1 comprised →2)-α-D-Manp-(1→ and →3)-ß-D-Galp-(1→, linked with the O-6 position of (→2,6)-α-D-Manp-(1→) of the main chain is branch α-D-Manp-(1→6)-α-D-Manp-(1→, linked with the O-6 positions of (→3)-ß-D-Galp-(1→) of the main chain are branches →4)-ß-D-Glcp-(1→ and →3)-ß-D-Galp-(1→, respectively. Finally, we demonstrated that EPS2-1 also shows free radical scavenging activity and iron ion reducing ability. At the same time, EPS2-1 could inhibit the proliferation of MFC cells and increase the cell viability of RAW264.7 cells. Our results suggested that EPS2-1 is a novel polysaccharide, and EPS2-1 has antioxidant activity. In addition, EPS2-1 may possess potential immunomodulatory and antitumor activities. This study promoted the application of EPS2-1 as the functional ingredients in the pharmaceutical and food industries.


Assuntos
Antioxidantes , Polissacarídeos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química , Peso Molecular
19.
Cancer Cell Int ; 21(1): 14, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407504

RESUMO

BACKGROUND: Dysregulated lncRNA PCAT6 was discovered in many cancers excluding pituitary adenomas (PA). Therefore, we explored the role of PCAT6 in PA in this research. METHODS: Abnormally expressed miRNAs were analyzed by bioinformatics and RT-qPCR. The target and regulator of miR-139-3p were determined by bioinformatics, dual-luciferase reporter assay, or RIP. The correlation among PCAT6, miR-139-3p, and BRD4 was further analyzed. The viability, apoptosis, cell cycle distribution of PA cells, as well as their ability to invade, migrate, and proliferate, were tested after transfection through CCK-8, flow cytometry, transwell, wound healing, and colony formation assays. After construction of transplanted-tumor model in nude mice, cell apoptosis in the tumor was detected by TUNEL. The expressions of PCAT6, BRD4, miR-139-3p, and apoptosis-related factors in PA tissues, cells, or tumor tissues were detected by RT-qPCR, Western blot, or IHC. RESULTS: PCAT6 and BRD4 were high-expressed but miR-139-3p was low-expressed in PA. Both the 3'-untranslated regions of PCAT6 and BRD4 mRNAs were demonstrated to contain a potential binding site for miR-139-3p. PCAT6 was positively correlated to BRD4, and miR-139-3p was negatively correlated to PCAT6 and BRD4. MiR-139-3p mimic, shPCAT6 and siBRD4 inhibited the viability, migration, invasion, and proliferation of PA cells while inducing apoptosis. MiR-139-3p mimic and shPCAT6 inhibited the cell cycle progression of PA cells, decreased the weight and volume of the xenotransplanted tumor, and reduced the levels of Bcl-2 and BRD4 while enhancing the levels of Bax, miR-139-3p, and Cleaved caspase-3. MiR-139-3p inhibitor caused the opposite effect of miR-139-3p mimic and further reversed the effect of shPCAT6 on on PA cells. CONCLUSION: PCAT6 regulated the progression of PA via modulating the miR-139-3p/BRD4 axis, which might provide a novel biomarker for the prevention, diagnosis, and treatment of PA.

20.
Cell Biol Toxicol ; 37(4): 633-651, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400021

RESUMO

This study explored the function of microRNAs (miRNAs) in invasive pituitary adenomas (IPA), and developed a microRNA-exosome strategy for the disease treatment. Differentially expressed miRNAs and tumor-associated markers in IPA, non-invasive pituitary adenoma (NIPA), and rat pituitary adenoma cells were identified by bioinformatics analysis and qRT-PCR. Then, the cells were treated by miR-149-5p and miR-99a-3p mimics or inhibitors, or incubated with modified exosome with overexpressed or silenced miRNAs. The cell behaviors were analyzed by molecular experiments. Xenograft assays were constructed by injection of pituitary adenoma cells and exosome into NU/NU nude mice. Tumor size, weight, and expressions of markers related to miRNAs and angiogenesis were determined. Target genes for miR-99a-3p and miR-149 were predicted and verified by bioinformatics analysis and molecular experiments. Twenty differentially expressed miRNAs were identified, among which miR-99a-3p and miR-149 were inhibited in both pituitary adenoma cells and tissues significantly. Expressions of E-cadherin and p53 were down-regulated, while those of MMP-2, MMP-9, N-cadherin, Vimentin, and VEGF were up-regulated in pituitary adenoma cells and tissues, especially in IPA. Further experiments revealed that overexpressed miR-149 and miR-99a-3p inhibited the growth and metastasis of pituitary adenoma cells and tube formation of endothelial cells. MiR-149 and miR-99a-3p overexpressed by exosome showed similar suppressive effects on cell viability, metastasis, tube formation ability, in vivo tumor growth, and expressions of angiogenesis-related markers. Further analysis showed that NOVA1, DTL, and RAB27B were targeted by miR-99a-3p. This study found that overexpressed miR-149-5p and miR-99a-3p induced by exosome could suppress the progression of IPA. 1. MiR-149-5p and miR-99a-3p affect the expression of EMT- and ECM-related markers and tumor-related genes in rat pituitary adenoma cells treated with exosomes. 2. Exosome inhibited the tumor growth. 3. Overexpressed miR-149-5p and miR-99a-3p induced by exosome.


Assuntos
Exossomos , MicroRNAs , Neoplasias Hipofisárias , Animais , Células Endoteliais , Exossomos/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , MicroRNAs/genética , Antígeno Neuro-Oncológico Ventral , Neoplasias Hipofisárias/genética , Proteínas de Ligação a RNA , Ratos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa