Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 521(7551): 217-221, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25778702

RESUMO

Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.


Assuntos
Tamanho Corporal/genética , Proteínas de Peixes/metabolismo , Morfogênese/genética , Oryzias/anatomia & histologia , Oryzias/embriologia , Actomiosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Proteínas de Peixes/genética , Proteínas Ativadoras de GTPase/metabolismo , Genes Essenciais/genética , Gravitação , Humanos , Mutação/genética , Tamanho do Órgão/genética , Oryzias/genética , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
2.
Angew Chem Int Ed Engl ; 58(20): 6688-6692, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30884017

RESUMO

Tin-based halide perovskite materials have been successfully employed in lead-free perovskite solar cells, but the overall power conversion efficiencies (PCEs) have been limited by the high carrier concentration from the facile oxidation of Sn2+ to Sn4+ . Now a chemical route is developed for fabrication of high-quality methylammonium tin iodide perovskite (MASnI3 ) films: hydrazinium tin iodide (HASnI3 ) perovskite film is first solution-deposited using presursors hydrazinium iodide (HAI) and tin iodide (SnI2 ), and then transformed into MASnI3 via a cation displacement approach. With the two-step process, a dense and uniform MASnI3 film is obtained with large grain sizes and high crystallization. Detrimental oxidation is suppressed by the hydrazine released from the film during the transformation. With the MASnI3 as light harvester, mesoporous perovskite solar cells were prepared, and a maximum power conversion efficiency (PCE) of 7.13 % is delivered with good reproducibility.

3.
Curr Pharm Des ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956914

RESUMO

BACKGROUND: Essential hypertension is a common clinical disease and a risk factor for cardiovascular and cerebrovascular diseases. Olmesartan medoxomil, amlodipine, and hydrochlorothiazide are commonly used antihypertensive drugs. The aim of this study was to establish a robust UPLC-MS/MS method for the simultaneous determination of olmesartan medoxomil, amlodipine, and hydrochlorothiazide in dog plasma. At the same time, the release in vivo and in vitro studies were conducted, and a preliminary in vitro-in vivo correlation (IVIVC) evaluation was performed. METHODS: The bioequivalence experiment was conducted with a double-crossed design. Three major components were extracted and analyzed by UHPLC-MS/MS. With the MRM scan, olmesartan and amlodipine were quantified by fragment conversion (m/z 447.10→190.10) and (m/z 408.95→294.00) under positive ESI mode, while hydrochlorothiazide was quantified with fragment conversion (m/z 295.90→268.90) under negative ESI mode. The in vitro release studies were performed using a USP paddle, and the dissolution medium was chosen from pH 6.0 to pH 6.8 according to the BCS classification of compounds. The IVIVC was calculated using the Wagner-Nelson equation. RESULTS: The linear ranges of olmesartan, amlodipine, and hydrochlorothiazide in the plasma were 5.0-2500, 0.1-50, and 3.0-1500 ng/mL, respectively. All accuracies were within 3.8% of the target values, and the findings revealed that intra-day and inter-day accuracy was less than 12.1%. Moreover, the recoveries exceeded 88.3%, the matrix effect tests were positive, and the stability tests were positive. With the establishment of correlation, the distinguishable dissolution condition (pH 6.8) was selected as the predictable condition. CONCLUSION: The established method was suitable for the preclinical pharmacokinetic study of tripartite drugs with strong specificity and high sensitivity. Through the evaluation of IVIVC, the connection between in vivo and in vitro drug testing was initially established.

.

4.
Hum Mol Genet ; 20(10): 2058-70, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21389084

RESUMO

Budding uninhibited by benzimidazole-related 1 (BUBR1) is a central molecule of the spindle assembly checkpoint. Germline mutations in the budding uninhibited by benzimidazoles 1 homolog beta gene encoding BUBR1 cause premature chromatid separation (mosaic variegated aneuploidy) [PCS (MVA)] syndrome, which is characterized by constitutional aneuploidy and a high risk of childhood cancer. Patients with the syndrome often develop Dandy-Walker complex and polycystic kidneys; implying a critical role of BUBR1 in morphogenesis. However, little is known about the function of BUBR1 other than mitotic control. Here, we report that BUBR1 is essential for the primary cilium formation, and that the PCS (MVA) syndrome is thus a novel ciliopathy. Morpholino knockdown of bubr1 in medaka fish also caused ciliary dysfunction characterized by defects in cerebellar development and perturbed left-right asymmetry of the embryo. Biochemical analyses demonstrated that BUBR1 is required for ubiquitin-mediated proteasomal degradation of cell division cycle protein 20 in the G0 phase and maintains anaphase-promoting complex/cyclosome-CDC20 homolog 1 activity that regulates the optimal level of dishevelled for ciliogenesis.


Assuntos
Cílios/metabolismo , Cílios/patologia , Estruturas Citoplasmáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cerebelo/metabolismo , Cerebelo/patologia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/fisiopatologia , Estruturas Citoplasmáticas/metabolismo , Proteínas Desgrenhadas , Cães , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Modelos Biológicos , Mosaicismo , Oryzias , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Transdução de Sinais , Complexos Ubiquitina-Proteína Ligase/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Proteínas Wnt/metabolismo
5.
Front Physiol ; 14: 1156286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228825

RESUMO

Introduction: Given the direct association with malignant ventricular arrhythmias, cardiotoxicity is a major concern in drug design. In the past decades, computational models based on the quantitative structure-activity relationship have been proposed to screen out cardiotoxic compounds and have shown promising results. The combination of molecular fingerprint and the machine learning model shows stable performance for a wide spectrum of problems; however, not long after the advent of the graph neural network (GNN) deep learning model and its variant (e.g., graph transformer), it has become the principal way of quantitative structure-activity relationship-based modeling for its high flexibility in feature extraction and decision rule generation. Despite all these progresses, the expressiveness (the ability of a program to identify non-isomorphic graph structures) of the GNN model is bounded by the WL isomorphism test, and a suitable thresholding scheme that relates directly to the sensitivity and credibility of a model is still an open question. Methods: In this research, we further improved the expressiveness of the GNN model by introducing the substructure-aware bias by the graph subgraph transformer network model. Moreover, to propose the most appropriate thresholding scheme, a comprehensive comparison of the thresholding schemes was conducted. Results: Based on these improvements, the best model attains performance with 90.4% precision, 90.4% recall, and 90.5% F1-score with a dual-threshold scheme (active: <1µM; non-active: >30µM). The improved pipeline (graph subgraph transformer network model and thresholding scheme) also shows its advantages in terms of the activity cliff problem and model interpretability.

6.
Bioorg Med Chem Lett ; 22(16): 5279-82, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22789429

RESUMO

A series of acrylamide analogues were designed and synthesized from Imatinib and Nilotinib as novel BCR-ABL inhibitors by application of the principle of nonclassical electronic isostere. All new compounds were evaluated for their inhibitory effects on the activity of BCR-ABL kinase and the proliferation of K562 leukemia cancer cells in vitro. The acrylamide analogues in which the substituent in C ring was trifluoromethyl group were identified as highly potent BCR-ABL kinase inhibitors. Compound 13f exhibited an IC(50) value as low as 20.6 nM in ABL kinase inhibition and an IC(50) value of 32.3 nM for antiproliferative activity, about 10.5-fold and 12-fold lower than those of Imatinib respectively. These results suggest that compound 13f is a promising candidate as a novel BCR-ABL kinase inhibitor for further development.


Assuntos
Acrilamidas/química , Antineoplásicos/síntese química , Benzamidas/síntese química , Desenho de Fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Acrilamidas/síntese química , Acrilamidas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Células K562 , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
7.
Dalton Trans ; 51(36): 13949-13956, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36040452

RESUMO

Waterproof and breathable membranes, which have great potential in applications such as membrane distillation, self-cleaning, and multifunctional clothing, have attracted a lot of attention due to their superior performance. Superhydrophobic and infrared-invisible polyurethane (PU)/silica (SiO2) nanofiber microporous membranes were prepared by facile electrospinning and a hydrothermal-assisted sol-gel method. Compared with pure PU nanofiber membranes, silica nanoparticles act as an adhesion layer, which can provide the rough surface and low surface energy of fibrous membranes. Therefore, the grafted PU/SiO2 nanofiber membrane was endowed with a good superhydrophobic effect, and its water contact angle (WCA) reached 161°. The nanofiber membrane exhibited comfortable waterproof and breathable properties, in which the air permeability and water vapor transfer rate was 5.18 mm s-1 and 7.85 kg m-2 d-1, respectively. When the PU/SiO2 nanofiber membrane was irradiated by infrared light, the surface of the fiber membrane showed a green, low-temperature state. These waterproof and breathable nanofiber membranes with superhydrophobic properties could be used in anti-icing, outdoor concealment, and camouflage applications.


Assuntos
Nanofibras , Dispositivos Eletrônicos Vestíveis , Nanofibras/química , Poliuretanos/química , Dióxido de Silício/química , Vapor , Têxteis
8.
Evodevo ; 10: 14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312422

RESUMO

BACKGROUND: The evolution of the head was one of the key events that marked the transition from invertebrates to vertebrates. With the emergence of structures such as eyes and jaws, vertebrates evolved an active and predatory life style and radiated into diversity of large-bodied animals. These organs are moved by cranial muscles that derive embryologically from head mesoderm. Compared with other embryonic components of the head, such as placodes and cranial neural crest cells, our understanding of cranial mesoderm is limited and is restricted to few species. RESULTS: Here, we report the expression patterns of key genes in zebrafish head mesoderm at very early developmental stages. Apart from a basic anterior-posterior axis marked by a combination of pitx2 and tbx1 expression, we find that most gene expression patterns are poorly conserved between zebrafish and chick, suggesting fewer developmental constraints imposed than in trunk mesoderm. Interestingly, the gene expression patterns clearly show the early establishment of medial-lateral compartmentalisation in zebrafish head mesoderm, comprising a wide medial zone flanked by two narrower strips. CONCLUSIONS: In zebrafish head mesoderm, there is no clear molecular regionalisation along the anteroposterior axis as previously reported in chick embryos. In contrast, the medial-lateral regionalisation is formed at early developmental stages. These patterns correspond to the distinction between paraxial mesoderm and lateral plate mesoderm in the trunk, suggesting a common groundplan for patterning head and trunk mesoderm. By comparison of these expression patterns to that of amphioxus homologues, we argue for an evolutionary link between zebrafish head mesoderm and amphioxus anteriormost somites.

9.
J Pharm Anal ; 9(6): 406-413, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890340

RESUMO

A sensitive, fast and comprehensive method for the quality assessment of Semen Ziziphi Spinosae (SZS) standard decoction with characterization of its chemical components was developed and validated. UPLC-Q/TOF-MS/MS system was used to identify thirty-six chemical components of SZS standard decoction which included nucleosides, phenolic acids, alkaloids, and flavonoids. Furthermore, a UPLC-PDA method was validated to simultaneously determine adenosine, protocatechuic acid, magnoflorine, catechin, protocatechin, vicenin II, spinosin, kaempferol-3-rutinoside, and 6'''-feruloylspinosin which represent four species of characteristic compounds. The qualitative method had been validated according to Chinese Pharmacopoeia (2015 edition) in terms of lineary, repeatability, recovery and stability for all analytes, with the results showing good precision, accuracy and stability. In conclusion, the method using UPLC combined with MS and PDA provided a novel way for the standardization and identification of SZS standard decoction, and also offered a basis for qualitative analysis and quality assessment of the preparations for SZS standard decoction.

10.
Adv Mater ; 30(44): e1804454, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30216573

RESUMO

Methylammonium iodide (MAI) and lead iodide (PbI2 ) have been extensively employed as precursors for solution-processed MAPbI3 perovskite solar cells (PSCs). However, the MAPbI3 perovskite films directly deposited from the precursor solutions, usually suffer from poor surface coverage due to uncontrolled nucleation and crystal growth of the perovskite during the film formation, resulting in low photovoltaic conversion efficiency and poor reproducibility. Herein, propylammonium iodide and PbI2 are employed as precursors for solution deposition of propylammonium lead iodide (PAPbI3 ) perovskite film. It is found that the precursors have good film formability, enabling the deposition of a large-area and homogeneous PAPbI3 perovskite film by a scalable dip-coating technique. The dip-coated PAPbI3 film is then subjected to an organic-cation displacement reaction, resulting in MAPbI3 film with high surface coverage and crystallinity. With the MAPbI3 film as the light absorber, planar PSCs are fabricated, and stabilized power conversion efficiencies of 19.27% and 15.68% can be achieved for the devices with active areas of 0.09 and 5.02 cm2 , respectively. The technology reported here provides a robust and efficient approach to fabricate large-area and high-efficiency perovskite cells for practical application.

11.
Methods Mol Biol ; 770: 211-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21805266

RESUMO

The medaka, Oryzias latipes, a small egg-laying freshwater fish, is one of the three vertebrate model organisms in which genome-wide phenotype-driven mutant screens have been carried out. Despite a number of large-scale screens in zebrafish, a substantial number of mutants with new distinct phenotypes were identified in similar large-scale screens in the medaka. This observed difference in phenotype is due to the two species having a unique combination of genetic, biological and evolutional properties. The two genetic models share a whole-genome duplication event over that of tetrapods; however, each has independently specialized or lost the function of one of the two paralogues. The two fish species complement each other as genetic systems as straightforward comparison of phenotypes, ease of side-by-side analysis using the same techniques and simple and inexpensive husbandry of mutants make these small teleosts quite powerful in combination. Furthermore, both have draft genome sequences and bioinformatic tools available that facilitate further genetic dissection including whole-genome approaches. Together with the gene-driven approach to generate gene knockout mutants of the fish models, the two fish models complement the mouse in genetically dissecting vertebrate genome functions. The external embryogenesis and transparent embryos of the fish allow systematic isolation of embryonic lethal mutations, the most difficult targets in mammalian mutant screens. This chapter will describe how to work with both medaka and zebrafish almost as one species in a lab, focusing on medaka and highlighting the differences between the medaka and zebrafish systems.


Assuntos
Técnicas Genéticas , Genômica/métodos , Laboratórios , Oryzias/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Cruzamento , Córion/citologia , Crioultramicrotomia , Bases de Dados Genéticas , Etiquetas de Sequências Expressas/metabolismo , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Microinjeções , Microscopia , Oryzias/crescimento & desenvolvimento , Óvulo/fisiologia , Sefarose , Especificidade da Espécie , Água/química , Peixe-Zebra/crescimento & desenvolvimento
12.
J Vis Exp ; (46)2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21206471

RESUMO

In this video, we demonstrate the technique of microinjection into one-cell stage medaka embryos. Medaka is a small egg-laying freshwater fish that allows both genetic and embryological analyses and is one of the vertebrate model organisms in which genome-wide phenotype-driven mutant screens were carried out (1), as in zebrafish and the mouse. Divergence of functional overlap of related genes between medaka and zebrafish allows identification of novel phenotypes that are unidentifiable in a single species (2), thus medaka and zebrafish are complementary for genetic dissection of vertebrate genome functions. To take advantage of medaka fish whose embryos are transparent and develop externally, microinjection is an essential technique to inject cell-tracers for labeling cells, mRNAs or anti-sense oligonucleotides for over-expressing and knocking-down genes of interest, and DNAs for making transgenic lines.


Assuntos
Microinjeções/métodos , Modelos Animais , Oryzias/genética , Animais , Feminino , Técnicas de Silenciamento de Genes/métodos , Masculino , Oryzias/embriologia
13.
J Vis Exp ; (46)2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21206472

RESUMO

Medaka is a small egg-laying freshwater fish that allows both genetic and embryological analyses and is one of the three vertebrate model organisms in which genome-wide phenotype-driven mutant screens were carried out (1). Divergence of functional overlap of related genes between medaka and zebrafish allows identification of novel phenotypes that are unidentifiable in a single species (2), thus medaka and zebrafish are complementary for genetic dissection of the vertebrate genome functions. Manipulation of medaka embryos, such as dechorionation, mounting embryos for imaging and cell transplantation, are key procedures to work on both medaka and zebrafish in a laboratory. Cell transplantation examines cell autonomy of medaka mutations. Chimeras are generated by transplanting labeled cells from donor embryos into unlabeled recipient embryos. Donor cells can be transplanted to specific areas of the recipient embryos based on the fate maps (3) so that clones from transplanted cells can be integrated in the tissue of interest during development. Due to the hard chorion and soft embryos, manipulation of medaka embryos is more involved than in zebrafish. In this video, we show detailed procedures to manipulate medaka embryos.


Assuntos
Transplante de Células/métodos , Córion/cirurgia , Oryzias/embriologia , Oryzias/cirurgia , Quimeras de Transplante/embriologia , Animais , Oryzias/genética , Quimeras de Transplante/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa