Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(747): eadl1408, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748772

RESUMO

Essential tremor (ET) is the most prevalent movement disorder, characterized primarily by action tremor, an involuntary rhythmic movement with a specific frequency. However, the neuronal mechanism underlying the coding of tremor frequency remains unexplored. Here, we used in vivo electrophysiology, optogenetics, and simultaneous motion tracking in the Grid2dupE3 mouse model to investigate whether and how neuronal activity in the olivocerebellum determines the frequency of essential tremor. We report that tremor frequency was encoded by the temporal coherence of population neuronal firing within the olivocerebellums of these mice, leading to frequency-dependent cerebellar oscillations and tremors. This mechanism was precise and generalizable, enabling us to use optogenetic stimulation of the deep cerebellar nuclei to induce frequency-specific tremors in wild-type mice or alter tremor frequencies in tremor mice. In patients with ET, we showed that deep brain stimulation of the thalamus suppressed tremor symptoms but did not eliminate cerebellar oscillations measured by electroencephalgraphy, indicating that tremor-related oscillations in the cerebellum do not require the reciprocal interactions with the thalamus. Frequency-disrupting transcranial alternating current stimulation of the cerebellum could suppress tremor amplitudes, confirming the frequency modulatory role of the cerebellum in patients with ET. These findings offer a neurodynamic basis for the frequency-dependent stimulation of the cerebellum to treat essential tremor.


Assuntos
Cerebelo , Tremor Essencial , Neurônios , Núcleo Olivar , Tremor Essencial/fisiopatologia , Animais , Humanos , Núcleo Olivar/fisiopatologia , Cerebelo/fisiopatologia , Camundongos , Masculino , Optogenética , Feminino , Estimulação Encefálica Profunda , Pessoa de Meia-Idade , Eletroencefalografia , Idoso
2.
Bioeng Transl Med ; 8(2): e10432, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925695

RESUMO

Tracking kinematic details of motor behaviors is a foundation to study the neuronal mechanism and biology of motor control. However, most of the physiological motor behaviors and movement disorders, such as gait, balance, tremor, dystonia, and myoclonus, are highly dependent on the overall momentum of the whole-body movements. Therefore, tracking the targeted movement and overall momentum simultaneously is critical for motor control research, but it remains an unmet need. Here, we introduce the intrinsic oscillatory property (IOP), a fundamental mechanical principle of physics, as a method for motion tracking in a force plate. The overall kinetic energy of animal motions can be transformed into the oscillatory amplitudes at the designed IOP frequency of the force plate, while the target movement has its own frequency features and can be tracked simultaneously. Using action tremor as an example, we reported that force plate-based IOP approach has superior performance and reliability in detecting both tremor severity and tremor frequency, showing a lower level of coefficient of variation (CV) compared with video- and accelerometer-based motion tracking methods and their combination. Under the locomotor suppression effect of medications, therapeutic effects on tremor severity can still be quantified by dynamically adjusting the overall locomotor activity detected by IOP. We further validated IOP method in optogenetic-induced movements and natural movements, confirming that IOP can represent the intensity of general rhythmic and nonrhythmic movements, thus it can be generalized as a common approach to study kinematics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa