Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
BMC Genomics ; 25(1): 524, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802777

RESUMO

BACKGROUND: The filamentous temperature-sensitive H protease (ftsH) gene family belongs to the ATP-dependent zinc metalloproteins, and ftsH genes play critical roles in plant chloroplast development and photosynthesis. RESULTS: In this study, we performed genome-wide identification and a systematic analysis of soybean ftsH genes. A total of 18 GmftsH genes were identified. The subcellular localization was predicted to be mainly in cell membranes and chloroplasts, and the gene structures, conserved motifs, evolutionary relationships, and expression patterns were comprehensively analyzed. Phylogenetic analysis of the ftsH gene family from soybean and various other species revealed six distinct clades, all of which showed a close relationship to Arabidopsis thaliana. The members of the GmftsH gene family were distributed on 13 soybean chromosomes, with intron numbers ranging from 3 to 15, 13 pairs of repetitive segment. The covariance between these genes and related genes in different species of Oryza sativa, Zea mays, and Arabidopsis thaliana was further investigated. The transcript expression data revealed that the genes of this family showed different expression patterns in three parts, the root, stem, and leaf, and most of the genes were highly expressed in the leaves of the soybean plants. Fluorescence-based real-time quantitative PCR (qRT-PCR) showed that the expression level of GmftsH genes varied under different stress treatments. Specifically, the genes within this family exhibited various induction levels in response to stress conditions of 4℃, 20% PEG-6000, and 100 mmol/L NaCl. These findings suggest that the GmftsH gene family may play a crucial role in the abiotic stress response in soybeans. It was also found that the GmftsH7 gene was localized on the cell membrane, and its expression was significantly upregulated under 4 ℃ treatment. In summary, by conducting a genome-wide analysis of the GmftsH gene family, a strong theoretical basis is established for future studies on the functionality of GmftsH genes. CONCLUSIONS: This research can potentially serve as a guide for enhancing the stress tolerance characteristics of soybean.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Família Multigênica , Filogenia , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica , Arabidopsis/genética , Estresse Fisiológico/genética , Estudo de Associação Genômica Ampla , Cromossomos de Plantas/genética
2.
Opt Express ; 32(9): 14978-14993, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859160

RESUMO

The cylindrical computer-generated hologram (CCGH), featuring a 360° viewing zone, has garnered widespread attention. However, the issue of high-order diffraction images due to pixelated structure in CCGH has not been previously reported and solved. For a cylindrical model offering a 360° viewing zone in the horizontal direction, the high-order diffraction images always overlap with the reconstruction image, leading to quality degradation. Furthermore, the 4f system is commonly used to eliminate high-order diffraction images in planar CGH, but its implementation is predictably complex for a cylindrical model. In this paper, we propose a solution to the issue of high-order diffraction images for CCGH. We derive the cylindrical diffraction formula from the outer hologram surface to the inner object surface in the spectral domain, and based on this, we subsequently analyze the effects brought by the pixel structure and propose the high-order diffraction model. Based on the proposed high-order diffraction model, we use the gradient descent method to optimize CCGH accounting for all diffraction orders simultaneously. Furthermore, we discuss the issue of circular convolution due to the periodicity of the Fast Fourier Transform (FFT) in cylindrical diffraction. The correctness of the proposed high-order diffraction model and the effectiveness of the proposed optimization method are demonstrated by numerical simulation. To our knowledge, this is the first time that the issue of high-order diffraction images in CCGH has been proposed, and we believe our solution can offer valuable guidance to practitioners in the field.

3.
Phys Rev Lett ; 132(21): 216602, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856262

RESUMO

Non-Abelian topological phases (NATPs) exhibit enigmatic intrinsic physics distinct from well-established Abelian topological phases, while lacking straightforward configuration and manipulation, especially for classical waves. In this Letter, we exploit novel braiding-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet time-reversal invariant Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k non-Abelian phases, and directly demonstrate their unique quotient relations via different end point states. Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with non-commutative characters.

4.
Phys Chem Chem Phys ; 26(13): 10289-10300, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497927

RESUMO

Constructing Z-scheme heterojunction photocatalysts with high solar-to-hydrogen (STH) efficiency is a practical alternative to produce clean and recyclable hydrogen energy on a large scale. This paper presents the design of stable Z-scheme blue phosphorene (BlueP)/γ-SnS heterostructures with excellent photocatalytic activities by applying strains. The first-principles calculations show that the BlueP/γ-SnS heterobilayer is a type-I heterojunction with an indirect bandgap of 1.41 eV and strong visible-light absorption up to 105 cm-1. Interestingly, biaxial strains (ε) can effectively regulate its bandgap width (semiconductor-metal) and induce the band alignment transition (type-I-type-II). Compressive and tensile strains can significantly enhance the interfacial interaction and visible-light absorption, respectively. More intriguingly, compressive strains can not only modulate the heterojunction types but also make the band edges meet the requirements for overall water splitting. In particular, the Z-scheme (type-I) BlueP/γ-SnS bilayer at -8% (-2%) strain exhibits a relatively high STH efficiency of 18% (17%), and the strained Z-scheme system (-8% ≤ ε ≤ -6%) also exhibits high and anisotropic carrier mobilities (158-2327 cm2 V-1 s-1). These strain-induced outstanding properties make BlueP/γ-SnS heterostructures promising candidates for constructing economically feasible photocatalysts and flexible nanodevices.

5.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612774

RESUMO

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Assuntos
Ciclopentanos , Isoleucina/análogos & derivados , Litchi , Oxilipinas , Litchi/genética , Peróxido de Hidrogênio , Desenvolvimento Embrionário , Poliaminas , Espermidina , Putrescina , Espermina , Arginina , Divisão Celular , Glucosídeos
6.
BMC Genomics ; 24(1): 596, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805454

RESUMO

BACKGROUND: Soybean is one of the most important oil crops in the world, and its protein and fat are the primary sources of edible oil and vegetable protein. The effective components in soybean protein and fat have positive effects on improving human immunity, anti-tumor, and regulating blood lipids and metabolism. Therefore, increasing the contents of protein and fat in soybeans is essential for improving the quality of soybeans. RESULTS: This study selected 292 soybean lines from different regions as experimental materials, based on SLAF-seq sequencing technology, and performed genome-wide association study (GWAS) on the phenotype data from 2019-2021 Planted at the experimental base of Jilin Agricultural University, such as the contents of protein and fat of soybeans. Through the GLM model and MLM model, four SNP sites (Gm09_39012959, Gm12_35492373, Gm16_9297124, and Gm20_24678362) that were significantly related to soybean fat content were associated for three consecutive years, and two SNP sites (Gm09_39012959 and Gm20_24678362) that were significantly related to soybean protein content were associated. By the annotation and enrichment of genes within the 100 Kb region of SNP loci flanking, two genes (Glyma.09G158100 and Glyma.09G158200) related to soybean protein synthesis and one gene (Glyma.12G180200) related to lipid metabolism were selected. By the preliminary verification of expression levels of genes with qPCR, it is found that during the periods of R6 and R7 of the accumulation of soybean protein and fat, Glyma.09G158100 and Glyma.09G158200 are positive regulatory genes that promote protein synthesis and accumulation, while Glyma.12G180200 is the negative regulatory gene that inhibits fat accumulation. CONCLUSIONS: These results lay the basis for further verifying the gene function and studying the molecular mechanisms regulating the accumulation of protein and fat in soybean seeds.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Soja , Humanos , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Locos de Características Quantitativas , Glycine max/fisiologia , Genes de Plantas , Sementes/metabolismo , Polimorfismo de Nucleotídeo Único
7.
Plant Biotechnol J ; 21(2): 433-448, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385569

RESUMO

Anthocyanin accumulations in the flowers can improve seed production of hybrid lines, and produce higher commodity value in cotton fibre. However, the genetic mechanism underlying the anthocyanin pigmentation in cotton petals is poorly understood. Here, we showed that the red petal phenotype was introgressed from Gossypium bickii through recombination with the segment containing the R3 bic region in the A07 chromosome of Gossypium hirsutum variety LR compared with the near-isogenic line of LW with white flower petals. The cyanidin-3-O-glucoside (Cy3G) was the major anthocyanin in red petals of cotton. A GhTT19 encoding a TT19-like GST was mapped to the R3 bic site associated with red petals via map-based cloning, but GhTT19 homologue gene from the D genome was not expressed in G. hirsutum. Intriguingly, allelic variations in the promoters between GhTT19LW and GhTT19LR , rather than genic regions, were found as genetic causal of petal colour variations. GhTT19-GFP was found localized in both the endoplasmic reticulum and tonoplast for facilitating anthocyanin transport. An additional MYB binding element found only in the promoter of GhTT19LR , but not in that of GhTT19LW , enhanced its transactivation by the MYB activator GhPAP1. The transgenic analysis confirmed the function of GhTT19 in regulating the red flower phenotype in cotton. The essential light signalling component GhHY5 bonded to and activated the promoter of GhPAP1, and the GhHY5-GhPAP1 module together regulated GhTT19 expression to mediate the light-activation of petal anthocyanin pigmentation in cotton. This study provides new insights into the molecular mechanisms for anthocyanin accumulation and may lay a foundation for faster genetic improvement of cotton.


Assuntos
Antocianinas , Gossypium , Gossypium/genética , Gossypium/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo , Pigmentação/genética , Regulação da Expressão Gênica de Plantas/genética
8.
Opt Express ; 31(19): 31142-31157, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710641

RESUMO

Multi-plane crosstalk is a key issue affecting the quality of holographic three-dimensional (3D) displays. The time-multiplexing stochastic gradient descent (TM-SGD) method has been applied to solve the inter-plane crosstalk problem in multi-plane reconstruction. However, the inter-plane crosstalk increases greatly as the inter-plane interval decreases, and the optimization time increases greatly as the number of planes increases. In this paper, we propose a double-constraint stochastic gradient descent method to suppress inter-plane crosstalk in multi-plane reconstruction. In the proposed method, we use the mask to make the optimization process focus more on the signal region and improve the reconstruction quality. Meanwhile, we adopt a constraint strategy of phase regularization to reduce the phase randomness of the signal region and suppress inter-plane crosstalk. Numerical simulation and optical experiment results confirm that our method can effectively suppress the inter-plane crosstalk and improve the quality of the reconstructed planes at a lower inter-plane interval. Moreover, the optimization time of our method is almost 4 times faster than that of TM-SGD. The proposed method can contribute to the realization of tomographic 3D visualization in the biomedical field, which requires the reconstruction of multiple tomographic images without inter-plane crosstalk.

9.
J Nat Prod ; 86(5): 1284-1293, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37137291

RESUMO

Nine new chromane-type meroterpenoids, including the rare nor-meroterpenoid sargasilol A (1) and the eight meroditerpenoids sargasilols B-I (2-9), were isolated from a China Sea collection of the brown alga Sargassum siliquastrum, together with six known analogues (10-15). The structures of the new chromanes were identified by extensive spectroscopic analysis and by comparison with previously reported data. Compounds 1-3 and 6-15 exhibited inhibition against LPS-induced NO production in BV-2 microglial cells, and 1, with a shorter carbon chain, was the most active one. Compound 1 was established as an anti-neuroinflammatory agent through targeting the IKK/IκB/NF-κB signaling pathway. As such, the chromanes from brown algae could provide promising anti-neuroinflammatory lead compounds for further structural modification.


Assuntos
Phaeophyceae , Sargassum , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Phaeophyceae/química , Sargassum/química , Transdução de Sinais
10.
Phytother Res ; 37(8): 3508-3521, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37166054

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that poses a serious threat to global public health. In an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike (S) protein to engage with angiotensin-converting enzyme 2 (ACE2) in host cells. Chinese herbal medicines and their active components exhibit antiviral activity, with luteolin being a flavonoid that can significantly inhibit SARS-CoV infection. However, whether it can block the interaction between the S-protein RBD of SARS-CoV-2 and ACE2 has not yet been elucidated. Here, we investigated the effects of luteolin on the binding of the S-protein RBD to ACE2. By employing a competitive binding assay in vitro, we found that luteolin significantly blocked the binding of S-protein RBD to ACE2 with IC50 values of 0.61 mM, which was confirmed by the neutralized infection with SARS-CoV-2 pseudovirus in vivo. A surface plasmon resonance-based competition assay revealed that luteolin significantly affects the binding of the S-protein RBD to the ACE2 receptor. Molecular docking was performed to predict the binding sites of luteolin to the S-protein RBD-ACE2 complex. The active binding sites were defined based on published literature, and we found that luteolin might interfere with the mixture at residues including LYS353, ASP30, and TYR83 in the cellular ACE2 receptor and GLY496, GLN498, TYR505, LEU455, GLN493, and GLU484 in the S-protein RBD. These residues may together form attractive charges and destroy the stable interaction of S-protein RBD-ACE2. Luteolin also inhibits SARS-CoV-2 spike protein-induced platelet spreading, thereby inhibiting the binding of the spike protein to ACE2. Our results are the first to provide evidence that luteolin is an anti-SARS-CoV-2 agent associated with interference between viral S-protein RBD-ACE2 interactions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Luteolina/farmacologia , Simulação de Acoplamento Molecular , Sítios de Ligação , Ligação Proteica
11.
J Sci Food Agric ; 103(4): 1692-1703, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36305046

RESUMO

BACKGROUND: Understanding of mechanisms that underpin high-yielding cropping systems is essential for optimizing management practices. Currently, the contribution of plant traits such as leaf area, chlorophyll content and intercepted photosynthetically active radiation (PARi ) to yield and nitrogen use efficiency (NUE) are not fully understood. In addition, the understanding of how canopy traits are affected by nitrogen (N) management practices is unclear. The present study aimed to determine the effect of amendment with controlled release urea (CR), common urea or no urea on NUE and plant eco-physiological characteristics in a 2-year field study in a double rice cropping system. RESULTS: Regulation of N release through amendment with CR significantly increased grain yield, NUE and leaf morpho-physiological attributes. CR coupled with common urea (at comparable total N rates) increased leaf area index (LAI), relative chlorophyll content index (CCI) and PARi , leading to higher grain yield and NUE (increased 24.4% and 25.3% in early and late rice, respectively) compared to local farming practice. Structural equation model (SEM) analysis showed that differences in N application, between CR and common urea, directly accounted for differences observed in soil nutrient, PARi and NUE rather than yield components. Additionally, compared to traditional yield determinants, LAI and PARi (between booting and filling stage) are capable of predicting and explaining grain yield by 0.69 and 0.92 of R2 in early and late rice, respectively. CONCLUSION: Leaf morpho-physiological traits are important for developing N management practices to increase NUE and improve food security for paddy agriculture in southern China. © 2022 Society of Chemical Industry.


Assuntos
Oryza , Oryza/química , Preparações de Ação Retardada/análise , Nitrogênio/análise , Ureia/química , Fertilizantes/análise , Agricultura , Solo/química , Folhas de Planta/química , Clorofila/análise , Grão Comestível/química , China
12.
J Am Chem Soc ; 144(3): 1130-1137, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029378

RESUMO

Herein, we report the first Ni-catalyzed enantioselective deaminative alkylation of amino acid and peptide derivatives with unactivated olefins. Key for success was the discovery of a new sterically encumbered bis(oxazoline) ligand backbone, thus offering a de novo technology for accessing enantioenriched sp3-sp3 linkages via sp3 C-N functionalization. Our protocol is distinguished by its broad scope and generality across a wide number of counterparts, even in the context of late-stage functionalization. In addition, an enantioselective deaminative remote hydroalkylation reaction of unactivated internal olefins is within reach, thus providing a useful entry point for forging enantioenriched sp3-sp3 centers at remote sp3 C-H sites.


Assuntos
Alcenos
13.
Phys Chem Chem Phys ; 23(17): 10615-10620, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33903862

RESUMO

It is currently technologically important to predict new two-dimensional (2D) ferromagnetic materials for next-generation information storage media. However, discovered 2D ferromagnetic materials are still rare. Here, we explored the fact that 2D transition metal borides are potential room-temperature 2D ferromagnetic materials. By performing first-principles calculations, we found that the CrB monolayer is a ferromagnetic (FM) metal, while the FeB monolayer is a typically antiferromagnetic (AFM) semiconductor. Interestingly, both CrB and FeB monolayers are FM metals with a moderate magnetic anisotropy energy by saturating with functional groups. Monte Carlo simulations show that the Curie temperature (Tc) of the CrB monolayer is about 520 K, which is further increased to 580 K and 570 K through -F and -OH chemical modification, while Tc is about 250 K, 275 K and 300 K for the FeBF, FeBO and FeBOH monolayer, respectively. Thus, the 2D transition metal borides have great potential applications in information storage devices.

14.
J Environ Manage ; 274: 111144, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798851

RESUMO

Drought is one of the most prominent natural threats to grassland productivity, although the magnitude of this threat is uncertain due to the different drought-levels. However, drought-productivity dynamics has not yet received much attention. It is necessary to establish the method to evaluate quantitatively the effect of different drought-levels on grassland productivity. To better understand the impact of different drought-levels on productivity dynamics, an assessment method to assess the quantitative effects of different drought-levels on grassland productivity was proposed based-on long-term observation data, standardized precipitation index (SPI) and Biome-BGC process model. Based-on assessment indicator of net primary productivity (NPP), NPP loss caused by moderate, severe and extreme drought was dramatically different in grasslands with a significant exponential change with gradient of different drought-levels. Furthermore, NPP loss variation in different grassland types under the same drought level was significantly different. Besides, the effect of drought on NPP gradually decreased by an exponential relationship in desert, typical and meadow steppe. However, the percentage of NPP loss in desert, typical and meadow steppe reduced by 20.5%, 13.1% and 17.5% with U-shaped, respectively. Meanwhile, our results can offer scientific basis to improve assessment impact of extreme climate events used by ecosystem model and data, and cope with carbon cycling management and climate change.


Assuntos
Secas , Ecossistema , Ciclo do Carbono , Mudança Climática , Pradaria
15.
Micromachines (Basel) ; 15(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675273

RESUMO

Preparing copper-based azide by in situ reaction is well-suited for MEMS processing technology and holds promising prospects in the field of MEMS micro-initiators. This study involved the preparation of porous copper with particle sizes of approximately 30 nm, 60 nm and 100 nm through powder sintering. These were used as precursors for a gas-solid in situ azide reaction to produce copper-based azide with varying morphologies and compositions. Copper-based azide micro-initiators were designed, and their output performance was evaluated using CL-20 and HNS-IV explosives. Analytical results revealed that the product from the reaction of the 100 nm precursor exhibited a lumpy and uneven structure with a conversion rate of 90.36%. The product from the 60 nm precursor reaction had a dense surface with a conversion rate of 94.56%, while the 30 nm precursor resulted in a needle-like form with a conversion rate of 92.82%. Detonation experiments demonstrated that the copper-based azide micro-initiators prepared with 100 nm of a porous copper precursor exhibited unstable output performance, requiring a 1.6 mg charge to successfully detonate CL-20 explosives. On the other hand, copper-based azide micro-initiators prepared from 60 nm and 30 nm of porous copper precursors exhibited stable output performance. A charge of 0.8 mg was adequate for reliably and consistently detonating CL-20 and HNS-IV explosives. The reduced particle size of the precursor enhanced the output performance of the copper-based azide micro-initiators, providing increased energy redundancy during detonation and improving overall usage reliability.

16.
Front Immunol ; 15: 1373876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715602

RESUMO

Objective: The objective of this study was to investigate the impact of electro-acupuncture (EA) on sepsis-related intestinal injury and its relationship with macrophage polarization. Methods: A sepsis model was established using cecal ligation and puncture (CLP) to assess the effectiveness of EA. The extent of pathological injury was evaluated using Chiu's score, the expression of ZO-1 and Ocludin, and the impact on macrophage polarization was examined through flow cytometry and immunofluorescence staining. The expression of spermidine, one type of polyamine, and ornithine decarboxylase (ODC) was measured using ELISA and PCR. Once the efficacy was determined, a polyamine depletion model was created, and the role of polyamines was reassessed by evaluating efficacy and observing macrophage polarization. Results: EA treatment reduced the Chiu's score and increased the expression of ZO-1 and Ocludin in the intestinal tissue of septic mice. It inhibited the secretion of IL-1ß and TNF-α, promoted the polarization of M2-type macrophages, increased the secretion of IL-10, and upregulated the expression of Arg-1, spermidine, and ODC. However, after depleting polyamines, the beneficial effects of EA on alleviating intestinal tissue damage and modulating macrophage polarization disappeared. Conclusion: The mechanism underlying the alleviation of intestinal injury associated with CLP-induced sepsis by EA involves with the promotion of M2-type macrophage polarization mediated by spermidine expression.


Assuntos
Modelos Animais de Doenças , Eletroacupuntura , Macrófagos , Poliaminas , Sepse , Animais , Sepse/terapia , Sepse/metabolismo , Sepse/imunologia , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Eletroacupuntura/métodos , Poliaminas/metabolismo , Masculino , Ativação de Macrófagos , Intestinos/patologia , Intestinos/imunologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
17.
Genes (Basel) ; 15(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38927692

RESUMO

Anthocyanidin reductase (ANR) is a key enzyme regulating anthocyanin synthesis and accumulation in plants. Here, lychee ANR genes were globally identified, their sequence and phylogenetic characteristics were analyzed, and their spatiotemporal expression patterns were characterized. A total of 51 ANR family members were identified in the lychee genome. The length of the encoded amino acid residues ranged from 87 aa to 289 aa, the molecular weight ranged from 9.49 KD to 32.40 KD, and the isoelectric point (pI) ranged from 4.83 to 9.33. Most of the members were acidic proteins. Most members of the LcANR family were located in the cytoplasm. The 51 LcANR family members were unevenly distributed in 11 chromosomes, and their exons and motif conserved structures were significantly different from each other. Promoters in over 90% of LcANR members contained anaerobically induced response elements, and 88% contained photoresponsive elements. Most LcANR family members had low expression in nine lychee tissues and organs (root, young leaf, bud, female flower, male flower, pericarp, pulp, seed, and calli), and some members showed tissue-specific expression patterns. The expression of one gene, LITCHI029356.m1, decreased with the increase of anthocyanin accumulation in 'Feizixiao' and 'Ziniangxi' pericarp, which was negatively correlated with pericarp coloring. The identified LcANR gene was heterologously expressed in tobacco K326, and the function of the LcANR gene was verified. This study provides a basis for the further study of LcANR function, particularly the role in lychee pericarp coloration.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Litchi , Família Multigênica , Filogenia , Proteínas de Plantas , Litchi/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta
18.
PeerJ ; 12: e17475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827300

RESUMO

Fertilization plays a crucial role in ensuring global food security and ecological balance. This study investigated the impact of substituting innovative biological manure for chemical fertilization on rice (Oryza sativa L) productivity and soil biochemical properties based on a three-year experiment. Our results suggested rice yield and straw weight were increased under manure addition treatment. Specifically, 70% of total nitrogen (N) fertilizer substituted by biological manure derived from straw, animal waste and microbiome, led to a substantial 13.6% increase in rice yield and a remarkable 34.2% boost in straw weight. In comparison to the conventional local farmer practice of applying 165 kg N ha-1, adopting 70% of total N plus biological manure demonstrated superior outcomes, particularly in enhancing yield components and spike morphology. Fertilization treatments led to elevated levels of soil microbial biomass carbon and N. However, a nuanced comparison with local practices indicated that applying biological manure alongside urea resulted in a slight reduction in N content in vegetative and economic organs, along with decreases of 10.4%, 11.2%, and 6.1% in N recovery efficiency (NRE), respectively. Prudent N management through the judicious application of partial biological manure fertilizer in rice systems could be imperative for sustaining productivity and soil fertility in southern China.


Assuntos
Fertilizantes , Esterco , Nitrogênio , Oryza , Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Esterco/análise , Fertilizantes/análise , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Solo/química , China , Agricultura/métodos , Microbiologia do Solo , Biomassa , Animais , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo
19.
Front Plant Sci ; 15: 1354384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742214

RESUMO

One-time application of blended controlled-release nitrogen fertilizer (CRN) has the potential to solve the difficulty of top-dressing fertilizer in the cultivation of rice and reduce the cost of CRN fertilizer application. However, its effects on rice dry matter and nitrogen (N) accumulation and translocation, yield and N-use efficiency (NUE) remain uncertain. Field experiments were carried out at three sites (Mingguang, Chaohu, and Guichi) in the Yangtze River Delta in China to compare the effects of the conventional split applications of urea and the blended CRN and on post-anthesis dry matter and N accumulation and translocation, yield, and NUE in rice at 0, 60, 120, 180, and 240 kg N ha-1. The results showed that at the equal N application rates, compared under the conventional N fertilizer treatment, the blended CRN application significantly increased the rice yield by an average of 0.9-6.9%, mainly due to increase the number of spikelets per panicle. The highest yield achieved with blended CRN treatment occurred at 200 kg N ha-1, with an NUE of 45.9%. Moreover, in comparison to the conventional N fertilizer, the blended CRN treatment increased pre-anthesis N translocation (Pre-NT) by 1.0-19.8%, and the contribution of pre-NT to grain N by 0.2-8.7%, and NUE by 3.2-28.4%. Meanwhile, the blended CRN treatment reduced labor costs by 1800 Yuan ha-1 and enhanced the economic gains by 21.5-68.8%. Therefore, one-time application of blended CRN ≤ 200 kg N ha-1 application rate improved rice yield, NUE, and economic profit compared to equivalent rates of split applied conventional N fertilizers.

20.
Planta ; 237(4): 1025-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23223881

RESUMO

A full-length abscisic acid (ABA) senescence and ripening inducible gene named LcAsr was obtained from litchi. Bioinformatic analysis showed that full-length LcAsr was 1,177 bp and contained an open reading frame (ORF) encoding 153 amino acids, 85- and 146-bp 5' and 3' UTRs, respectively. LcAsr was expressed in all organs, with preferential expression in the flower and low levels in pulp. The expression level of LcAsr in postharvest uncovered fruit reached a maximum at 24 h after harvest. When the litchi fruit was covered with plastic film, the LcAsr expression level remained constant. LcASR protein localized in the nucleus. LcAsr was transformed in Arabidopsis thaliana L. (ecotype Columbia) and four transgenic lines were obtained. One line, 35S::LcAsrD, was selected for drought tolerance analysis and showed higher tolerance to drought than the control. The activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase were much higher in the transgenic line than the control under drought conditions. The levels of several ABA/stress-regulated genes were investigated. The transcript level of responsive to ABA (RAB18) remained constant and responsive to dehydration (RD29A) displayed a slight decrease in the Columbia line (Col). However, the transcript levels of LcAsr, RAB18, and RD29A were greatly enhanced in the transgenic 35S::LcAsrD. The transcript levels of KAT1, KAT2, and SKOR were also markedly decreased in the transgenic line. These results suggest an important role of LcAsr as a protective molecule for water deficit and help to understand the molecular mechanism of postharvest litchi fruit dehydration.


Assuntos
Genes de Plantas , Litchi/genética , Estresse Fisiológico , Água/fisiologia , Ácido Abscísico , Sequência de Aminoácidos , Ascorbato Peroxidases/metabolismo , Sequência de Bases , Catalase/metabolismo , Secas , Glutationa Redutase/metabolismo , Litchi/enzimologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa