Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(29): 20205-20212, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007348

RESUMO

Incipient ferroelectrics have emerged as an attractive class of functional materials owing to their potential to be engineered for exotic ferroelectric behavior, holding great promise for expanding the ferroelectric family. However, thus far, their artificially engineered ferroelectricity has fallen far short of rivaling classic ferroelectrics. In this study, we address this challenge by developing a superfine nanodomain engineering strategy. By applying this approach to representative incipient ferroelectric of SrTiO3-based films, we achieve unprecedentedly strong ferroelectricity, not only surpassing previous records for incipient ferroelectrics but also being comparable to classic ferroelectrics. The remanent polarization of the thin film reaches up to 17.0 µC cm-2 with an ultrahigh Curie temperature of 973 K. Atomic-scale investigations elucidate the origin of this robust ferroelectricity in the emergent high-density superfine nanodomains spanning merely 3-10 unit cells. Combining experimental results with theoretical assessments, we unveil the underlying mechanism, where the intentionally introduced diluted foreign Fe element creates a deeper Landau energy well and promotes a short-range ordering of polarization. Our developed strategy significantly streamlines the design of unconventional ferroelectrics, providing a versatile pathway for exploring new and superior ferroelectric materials.

2.
Nano Lett ; 23(4): 1273-1279, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36729943

RESUMO

Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 µB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.

3.
Phys Rev Lett ; 131(24): 246801, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181148

RESUMO

Disordered ferroics hold great promise for next-generation magnetoelectric devices because their lack of symmetry constraints implies negligible hysteresis with low energy costs. However, the transition temperature and the magnitude of polarization and magnetization are still too low to meet application requirements. Here, taking the prototype perovskite of SrTiO_{3} as an instance, we realize a coexisting spin and dipole reentrant glass states in SrTiO_{3} homoepitaxial films via manipulation of local symmetry. Room-temperature saturation magnetization and spontaneous polarization reach ∼ 10 emu/cm^{3} and ∼ 25 µC/cm^{2}, respectively, with high transition temperatures (101 K and 236 K for spin and dipole glass temperatures and 556 K and 1100 K for Curie temperatures, respectively). Our atomic-scale investigation points out an underlying mechanism, where the Ti/O-defective unit cells break the local translational and orbital symmetry to drive the formation of unusual slush states. This study advances our understanding of the nature of the intricate couplings of ferroic glasses. Our approach could be applied to numerous perovskite oxides for the simultaneous control of the local magnetic and polar orderings and for the exploration of the underlying physics.

4.
Inorg Chem ; 62(9): 3788-3798, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36814133

RESUMO

A new series of compounds, ANi5Bi5.6+δ (where A = K, Rb, and Cs) are discovered with a quasi-one-dimensional (Q1D) [Ni5Bi5.6+δ]- double-walled column and a coaxial inner one-dimensional Bi atomic chain. The columns are linked to each other by intercolumn Bi-Bi bonds and separated by an A+ cation. Typical metallic behaviors with strong correlation of itinerant electrons and the Sommerfeld coefficient enhanced with the increasing cationic radius were experimentally observed and supported by first-principles calculations. Compared to AMn6Bi5 (where A = K, Rb, and Cs), the enhanced intercolumn distances and the substitution of Ni for Mn give rise to strong diamagnetic susceptibilities in ANi5Bi5.6+δ. First-principles calculations reveal possible uncharged Ni atoms with even number of electrons in ANi5Bi5.6+δ, which may explain the emergence of diamagnetism. ANi5Bi5.6+δ, as Q1D diamagnetic metals with strong electron correlation, provide a unique platform to understand exotic magnetism and explore novel quantum effects.

5.
Phys Chem Chem Phys ; 25(19): 13410-13416, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37161656

RESUMO

Hematite is a potential photoelectrode for photoelectrochemical (PEC) water splitting. Nevertheless, its water oxidation efficiency is highly limited by its significant photogenerated carrier recombination, poor conductivity and slow water oxidation kinetics. Herein, under low-vacuum (LV) conditions, we fabricated a CoMoO4 layer on oxygen-vacancy-modified hematite (CoMo-Fe2O3 (LV)) for the first time for efficient solar water splitting. The existence of oxygen vacancies can significantly facilitate the electrical conductivity, while the large onset potential along with oxygen vacancies can be lowered by the CoMoO4 with accelerated water oxidation kinetics. Therefore, a high photocurrent density of 3.53 mA cm-2 at 1.23 VRHE was obtained for the CoMo-Fe2O3 (LV) photoanode. Moreover, it can be further coupled with the FeNiOOH co-catalyst to reach a benchmark photocurrent of 4.18 mA cm-2 at 1.23 VRHE, which is increased around 4-fold compared with bare hematite (0.90 mA cm-2). The combination of CoMoO4, FeNiOOH, and oxygen vacancies may be used as a reasonable strategy for developing high-efficiency hematite-based photoelectrodes for solar water oxidation.

6.
Angew Chem Int Ed Engl ; 62(10): e202215295, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36617498

RESUMO

Here, we report kinetic studies using electron spin resonance spectroscopy on spin catalysis reactions caused by using graphene belts which were synthesized by a radical coupling method. The results show that σ-type free radical species provide the dominant sites for catalytic activity through the spin-spin interaction, although there are some other influencing factors. The spin catalysis mechanism can be applied both in the oxygen reduction reaction (ORR) and in organic synthesis. The graphene belt spin catalyst shows excellent performance with a high ORR half-wave potential of 0.81 V and long-term stability with almost no loss of activity after 50 000 cycles in alkaline media. It also shows excellent performance in a benzylamine coupling with molecular oxygen to generate the corresponding imine at an average conversion of ≈97.7 % and an average yield of ≈97.9 %. This work opens up a new research direction for understanding aerobic processes in the field of spin catalysis.

7.
Phys Rev Lett ; 128(2): 026401, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089748

RESUMO

TiSe_{2} is a layered material exhibiting a commensurate (2×2×2) charge density wave (CDW) with a transition temperature of ∼200 K. Recently, incommensurate CDW in bulk TiSe_{2} draws great interest due to its close relationship with the emergence of superconductivity. Here, we report an incommensurate superstructure in monolayer TiSe_{2}/CuSe/Cu(111) heterostructure. Characterizations by low-energy electron diffraction and scanning tunneling microscopy show that the main wave vector of the superstructure is ∼0.41a^{*} or ∼0.59a^{*} (here a^{*} is in-plane reciprocal lattice constant of TiSe_{2}). After ruling out the possibility of moiré superlattices, according to the correlation of the wave vectors of the superstructure and the large indirect band gap below the Fermi level, we propose that the incommensurate superstructure is associated with an incommensurate charge density wave (I-CDW). It is noteworthy that the I-CDW is robust with a transition temperature over 600 K, much higher than that of commensurate CDW in pristine TiSe_{2}. Based on our data and analysis, we present that interface effect may play a key role in the formation of the I-CDW state.

8.
Phys Rev Lett ; 128(1): 017202, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061447

RESUMO

Heterointerfaces have led to the discovery of novel electronic and magnetic states because of their strongly entangled electronic degrees of freedom. Single-phase chromium compounds always exhibit antiferromagnetism following the prediction of the Goodenough-Kanamori rules. So far, exchange coupling between chromium ions via heteroanions has not been explored and the associated quantum states are unknown. Here, we report the successful epitaxial synthesis and characterization of chromium oxide (Cr_{2}O_{3})-chromium nitride (CrN) superlattices. Room-temperature ferromagnetic spin ordering is achieved at the interfaces between these two antiferromagnets, and the magnitude of the effect decays with increasing layer thickness. First-principles calculations indicate that robust ferromagnetic spin interaction between Cr^{3+} ions via anion-hybridization across the interface yields the lowest total energy. This work opens the door to fundamental understanding of the unexpected and exceptional properties of oxide-nitride interfaces and provides access to hidden phases at low-dimensional quantum heterostructures.

9.
Phys Chem Chem Phys ; 24(16): 9333-9344, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383792

RESUMO

Although rare-earth nickelates (ReNiO3, Re ≠ La) exhibit abundant electronic phases and widely adjustable metal to insulator electronic transition properties, their practical electronic applications are largely impeded by their intrinsic meta-stability. Apart from elevating the oxygen reaction pressure, heterogeneous nucleation is expected to be an alternative strategy that enables the crystallization of ReNiO3 at low meta-stability. In this work, the respective roles of high oxygen pressure and heterogeneous interface in triggering ReNiO3 thin film growth in the metastable state are revealed. ReNiO3 (Re = Nd, Sm, Eu, Gd and Dy) thin films grown on a LaAlO3 single crystal substrate show effective crystallization at atmospheric pressure without the necessity to apply high oxygen pressure, suggesting that the interfacial bonding between the ReNiO3 and substrates can sufficiently reduce the positive Gibbs formation energy of ReNiO3, which is further verified by the first-principles calculations. Nevertheless, the abrupt electronic transitions only appear in ReNiO3 thin films grown at high oxygen pressure, in which case the oxygen vacancies are effectively eliminated via high oxygen pressure reactions as indicated by near-edge X-ray absorption fine structure (NEXAFS) analysis. This work unveils the synergistic effects of heterogeneous nucleation and high oxygen pressure on the growth of high quality ReNiO3 thin films.

10.
Phys Chem Chem Phys ; 24(45): 27915-27922, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367389

RESUMO

Although the d-band correlations within metastable rare-earth ferrites (ReFe2O4) enable charge ordering transition functionalities beyond conventional semiconductors, their material synthesis yet requires a reducing atmosphere that is toxic and explosive. Herein, we demonstrate a reactive spark plasma sintering (RSPS) strategy to effectively synthesize metastable ReFe2O4 (Re = Er, Tm, Yb, Lu) simply in coarse vacuum within a greatly shortened reaction period. High flexibility is gained in adjusting their rare-earth composition and thereby the charge ordering transition temperature within 218-330 K. Assisted by the temperature-dependent near edge X-ray absorption fine structure (NEXAFS) analysis, an elevation in the Fe3+/Fe2+ orbital configuration within ReFe2O4 was observed compared to previous reports, and it is consistent with their higher Mott temperature and activation energy observed in their electrical transportations. This work elucidates stabilization of the metastable phase (e.g., ReFe2O4) via the non-equilibrium processes of RSPS beyond the thermodynamic restrictions.

11.
Nano Lett ; 21(7): 3146-3154, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33750141

RESUMO

Manipulation of octahedral distortion at atomic scale is an effective means to tune the ground states of functional oxides. Previous work demonstrates that strain and film thickness are variable parameters to modify the octahedral parameters. However, selective control of bonding geometry by structural propagation from adjacent layers is rarely studied. Here we propose a new route to tune the ferromagnetism in SrRuO3 (SRO) ultrathin layers by oxygen coordination of adjacent SrCuO2 (SCO) layers. The infinite-layered CuO2 exhibits a structural transformation from "planar-type" to "chain-type" with reduced film thickness. Two orientations dramatically modify the polyhedral connectivity at the interface, thus altering the octahedral distortion of SRO. The local structural variation changes the spin state of Ru and orbital hybridization strength, leading to a significant change in the magnetoresistance and anomalous Hall resistivity. These findings could launch investigations into adaptive control of functionalities in quantum oxide heterostructures using oxygen coordination.

12.
Nano Lett ; 21(19): 8324-8331, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34546060

RESUMO

Rare earth nickelates including LaNiO3 are promising catalysts for water electrolysis to produce oxygen gas. Recent studies report that Fe substitution for Ni can significantly enhance the oxygen evolution reaction (OER) activity of LaNiO3. However, the role of Fe in increasing the activity remains ambiguous, with potential origins that are both structural and electronic in nature. On the basis of a series of epitaxial LaNi1-xFexO3 thin films synthesized by molecular beam epitaxy, we report that Fe substitution tunes the Ni oxidation state in LaNi1-xFexO3 and a volcano-like OER trend is observed, with x = 0.375 being the most active. Spectroscopy and ab initio modeling reveal that high-valent Fe3+δ cationic species strongly increase the transition-metal (TM) 3d bandwidth via Ni-O-Fe bridges and enhance TM 3d-O 2p hybridization, boosting the OER activity. These studies deepen our understanding of structural and electronic contributions that give rise to enhanced OER activity in perovskite oxides.

13.
J Am Chem Soc ; 143(17): 6491-6497, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900066

RESUMO

Although BaTiO3 is one of the most famous lead-free piezomaterials, it suffers from small spontaneous and low Curie temperature. Chemical pressure, as a mild way to modulate the structures and properties of materials by element doping, has been utilized to enhance the ferroelectricity of BaTiO3 but is not efficient enough. Here, we report a promoted chemical pressure route to prepare high-performance BaTiO3 films, achieving the highest remanent polarization, Pr (100 µC/cm2), to date and high Curie temperature, Tc (above 1000 °C). The negative chemical pressure (∼-5.7 GPa) was imposed by the coherent lattice strain from large cubic BaO to small tetragonal BaTiO3, generating high tetragonality (c/a = 1.12) and facilitating large displacements of Ti. Such negative pressure is especially significant to the bonding states, i.e., hybridization of Ba 5p-O 2p, whereas ionic bonding in bulk and strong bonding of Ti eg and O 2p, which contribute to the tremendously enhanced polarization. The promoted chemical pressure method shows general potential in improving ferroelectric and other functional materials.

14.
Nano Lett ; 20(2): 881-886, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31887059

RESUMO

The coupling strain in nanoscale systems can achieve control of the physical properties in functional materials, such as ferromagnets, ferroelectrics, and superconductors. Here, we directly demonstrate the atomic-scale structure of super-tetragonal PbTiO3 nanocomposite epitaxial thin films, including the extraordinary coupling of strain transition and the existence of the oxygen vacancies. Large strain gradients, both longitudinal and transverse (∼3 × 107 m-1), have been observed. The original non-magnetic ferroelectric composites notably evoke ferromagnetic properties, derived from the combination of Ti3+ and oxygen vacancies. The saturation ferromagnetic moment can be controlled by the strain of both the interphase and substrate, optimized to a high value of ∼55 emu/cc in 10-nm thick nanocomposite epitaxial thin films on the LaAlO3 substrate. Strain engineering provides a route to explore multiferroic systems in conventional non-magnetic ferroelectric oxides and to create functional data storage devices from both ferroelectrics and ferromagnetics.

15.
Nano Lett ; 20(4): 2537-2543, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182079

RESUMO

Two-dimensional (2D) materials with a Lieb lattice host exotic electronic band structures. Such a system does not exist in nature, and it is also difficult to obtain in the laboratory due to its structural instability. Here, we experimentally realized a 2D system composed of a tin overlayer on an aluminum substrate by molecular beam epitaxy. The specific arrangement of Sn atoms on the Al(100) surface, which benefits from favorable interface interactions, forms a stabilized buckled Lieb lattice. Theoretical calculations indicate a partially broken nodal line loop and a topologically nontrivial insulating state with a spin-orbital coupling effect in the band structure of this Lieb lattice. The electronic structure of this system is experimentally characterized by angle-resolved photoemission spectroscopy, in which the hybridized states between topmost Al atoms and Sn atoms are revealed. Our work provides an appealing method for constructing 2D quantum materials based on the Lieb lattice.

16.
Nano Lett ; 19(9): 6323-6329, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431010

RESUMO

Two-dimensional topological materials have attracted intense research efforts owing to their promise in applications for low-energy, high-efficiency quantum computations. Group-VA elemental thin films with strong spin-orbit coupling have been predicted to host topologically nontrivial states as excellent two-dimensional topological materials. Herein, we experimentally demonstrated for the first time that the epitaxially grown high-quality antimonene monolayer islands with buckled configurations exhibit significantly robust one-dimensional topological edge states above the Fermi level. We further demonstrated that these topologically nontrivial edge states arise from a single p-orbital manifold as a general consequence of atomic spin-orbit coupling. Thus, our findings establish monolayer antimonene as a new class of topological monolayer materials hosting the topological edge states for future low-power electronic nanodevices and quantum computations.

17.
Nano Lett ; 18(12): 7809-7815, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30407013

RESUMO

Understanding the general electronic principles underlying molecule-surface interactions at the nanoscale is crucial for revealing the processes based on chemisorption, like catalysis, surface ligation, surface fluorescence, etc. However, the electronic mechanisms of how surface states affect and even dominate the properties of nanomaterials have long remained unclear. Here, using one-unit-thin TiO2 nanosheet as a model surface platform, we find that surface ligands can competitively polarize and confine the valence 3d orbitals of surface Ti atoms from delocalized energy band states to localized chemisorption bonds, through probing the surface chemical interaction at the orbital level with near-edge X-ray absorption fine structure (NEXAFS). Such ligand-induced orbital redistributions, which are revealed by combining experimental discoveries, quantum calculations, and theoretical analysis, are cooperative with ligand coverages and can enhance the strength of chemisorption and ligation-induced surface effects on nanomaterials. The model and concept of nanoscale cooperative chemisorption reveal the general physical principle that drives the coverage-dependent ligand-induced surface effects on regulating the electronic structures, surface activity, optical properties, and chemisorption strength of nanomaterials.

18.
Nano Lett ; 18(3): 2133-2139, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29457727

RESUMO

Group-V elemental monolayers were recently predicted to exhibit exotic physical properties such as nontrivial topological properties, or a quantum anomalous Hall effect, which would make them very suitable for applications in next-generation electronic devices. The free-standing group-V monolayer materials usually have a buckled honeycomb form, in contrast with the flat graphene monolayer. Here, we report epitaxial growth of atomically thin flat honeycomb monolayer of group-V element antimony on a Ag(111) substrate. Combined study of experiments and theoretical calculations verify the formation of a uniform and single-crystalline antimonene monolayer without atomic wrinkles, as a new honeycomb analogue of graphene monolayer. Directional bonding between adjacent Sb atoms and weak antimonene-substrate interaction are confirmed. The realization and investigation of flat antimonene honeycombs extends the scope of two-dimensional atomically-thick structures and provides a promising way to tune topological properties for future technological applications.

19.
Angew Chem Int Ed Engl ; 58(42): 15089-15097, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31444841

RESUMO

The development of highly efficient metal-free carbon electrocatalysts for the oxygen reduction reaction (ORR) is one very promising strategy for the exploitation and commercialization of renewable and clean energy, but this still remains a significant challenge. Herein, we demonstrate a facile approach to prepare three-dimensional (3D) N-doped carbon with a sp3 /sp2 carbon interface derived from ionic liquids via a simple pyrolysis process. The tunable hybrid sp3 and sp2 carbon composition and pore structures stem from the transformation of ionic liquids to polymerized organics and introduction of a Co metal salt. Through tuning both composition and pores, the 3D N-doped nanocarbon with a high sp3 /sp2 carbon ratio on the surface exhibits a superior electrocatalytic performance for the ORR compared to that of the commercial Pt/C in Zn-air batteries. Density functional theory calculations suggest that the improved ORR performance can be ascribed to the existence of N dopants at the sp3 /sp2 carbon interface, which can lower the theoretical overpotential of the ORR.

20.
Phys Chem Chem Phys ; 19(44): 29913-29917, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29087413

RESUMO

Strong electron-correlations can result in un-conventional transportation behaviour, such as metal-insulator transitions, high temperature superconductivity and bad metal conduction. Here we report a distinct transportation characteristic achieved by actively coupling the carriers with randomly distributed lattice-dipoles for strain-distorted SrNbxTi1-xO3. The strong electron correlations split the conduction band, and lead to a distinguished thermal-emitted carrier transportation with an activation energy of ∼10-2 eV. Further consistency was demonstrated by the respective changes in orbital configurations observed in near edge X-ray absorption fine structures. The present investigation demonstrates new mechanisms for regulating the carrier transportation using polaronic electron correlations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa