Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Transl Med ; 19(1): 295, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238315

RESUMO

BACKGROUND: Metastasis and invasion are crucial in determining the mortality of cervical carcinoma (CC) patients. The epithelial-mesenchymal transition (EMT) is now a universal explanation for the mechanisms of tumor metastasis. Α-chimeric protein (α-chimaerin, CHN1) plays an important role in the regulation of signal transduction and development. However, the molecular regulatory relationships between CHN1 and CC progression in relation to EMT have not yet been identified. METHODS: The expression of CHN1 in CC tissues, adjacent tissues, and lymph node metastases from CC patients was detected by immunohistochemistry. Upregulation and knockdown of CHN1 were achieved by transfection of CC cells. The effect of CHN1 on cell proliferation was determined by CCK-8 and plate clone formation assays. Changes in migration and invasion capabilities were evaluated using scratch migration and transwell invasion assays. The effect of CHN1 overexpression and interference on xenograft tumor growth was determined by tumor weight and pathological analyses. The expression of EMT-related mRNAs was measured by qRT-PCR in transfected CC cells. EMT-related proteins and Akt/GSK-3ß/Snail signaling pathway-related proteins were also evaluated by western blotting. RESULTS: CHN1 was overexpressed in CC tissues and was associated with lymph node metastasis and low survival in CC patients. Overexpression of CHN1 promoted cell proliferation, migration, and invasion in CC cells. In contrast, silencing of CHN1 inhibited these phenomena. Overexpression of CHN1 promoted tumor formation in an in vivo xenograft tumor mouse model, with increased tumor volumes and weights. In addition, CHN1 induced the expression of EMT-related transcription factors, accompanied by the decreased expression of epithelial markers and increased expression of mesenchymal markers. The Akt/GSK-3ß/Snail signaling pathway was activated by overexpression of CHN1 in vitro, and activation of this pathway was inhibited by the signaling pathway inhibitor LY294002. CONCLUSION: These results suggest that CHN1 promotes the development and progression of cervical carcinoma via the Akt/GSK-3ß/Snail pathway by inducing EMT.


Assuntos
Carcinoma , Transição Epitelial-Mesenquimal , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimerina 1 , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
2.
Reproduction ; 159(2): 133-144, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31917674

RESUMO

Menstruation is a specific physiological phenomenon that occurs in women. However, molecular mechanisms underlying this phenomenon are still unclear. According to the classical theory, tissue hypoxia resulting from vasoconstriction of the spiral arteries after progesterone (P4) withdrawal initiates the breakdown of the endometrium at the earliest stage of menstruation. However, this theory has been challenged by previous studies that have questioned the function and even the existence of hypoxia during menstruation. In this study, we not only provide convincing evidence that hypoxia exists during endometrial breakdown, but also further explore the role of hypoxia and hypoxia-inducible factor 1 (HIF1) in this process. Based on mouse menstrual-like model and experiments with human decidual stromal cells, we observed that P4 withdrawal induced both hypoxia and HIF1 activation; however, endometrial breakdown was triggered only by P4 withdrawal. Hypoxia significantly enhanced the mRNA expression of specific matrix metalloproteinases (MMPs) under the conditions of P4 withdrawal. In conclusion, hypoxia is involved but not an essential component of endometrial breakdown during menstruation.


Assuntos
Hipóxia Celular/fisiologia , Endométrio/fisiologia , Menstruação/fisiologia , Animais , Decídua/citologia , Endométrio/irrigação sanguínea , Endométrio/química , Feminino , Expressão Gênica/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/análise , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Metaloproteinases da Matriz/genética , Camundongos , Modelos Animais , Progesterona/administração & dosagem , Progesterona/fisiologia , Vasoconstrição
3.
BMC Cancer ; 20(1): 1029, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109127

RESUMO

BACKGROUND: Cervical cancer is the leading cause of cancer-related death in women worldwide. However, the mechanisms mediating the development and progression of cervical cancer are unclear. In this study, we aimed to elucidate the roles of microRNAs and a1-chimaerin (CHN1) protein in cervical cancer progression. METHODS: The expression of miR-205 and CHN1 protein was investigated by in situ hybridisation and immunohistochemistry. We predicted the target genes of miR-205 using software prediction and dual luciferase assays. The expression of mRNAs and proteins was tested by qRT-PCR and western blotting respectively. The ability of cell growth, migration and invasion was evaluated by CCK-8 and transwell. Cell apoptosis was analysed by flow cytometry analysis. RESULTS: We found that miR-205 and CHN1 were highly expressed in human cervical cancer tissue compared with paired normal cervical tissues. The CHN1 gene was shown to be targeted by miR-205 in HeLa cells. Interestingly, transfection with miR-205 mimic upregulated CHN1 mRNA and protein, while miR-205 inhibitor downregulated CHN1 in high-risk and human papilloma virus (HPV)-negative human cervical cancer cells in vitro,. These data suggested that miR-205 positively regulated the expression of CHN1. Furthermore, the miR-205 mimic promoted cell growth, apoptosis, migration, and invasion in high-risk and HPV-negative cervical cancer cells, while the miR-205 inhibitor blocked these biological processes. Knockdown of CHN1 obviously reduced the aggressive cellular behaviours induced by upregulation of miR-205, suggesting that miR-205 positively regulated CHN1 to mediate these cell behaviours during the development of cervical cancer. Furthermore, CHN1 was correlated with lymph node metastasis in clinical specimens. CONCLUSIONS: Our findings showed that miR-205 positively regulated CHN1 to mediate cell growth, apoptosis, migration, and invasion during cervical cancer development, particularly for high-risk HPV-type cervical cancer. These findings suggested that dysregulation of miR-205 and subsequent abnormalities in CHN1 expression promoted the oncogenic potential of human cervical cancer.


Assuntos
Quimerina 1/genética , Metástase Linfática/genética , MicroRNAs/genética , Regulação para Cima , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimerina 1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Neoplasias do Colo do Útero/metabolismo
4.
Biochem Biophys Res Commun ; 473(4): 828-833, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27033606

RESUMO

Successful implantation of an embryo requires adequate depth of invasion in the endometrium, which depends upon decidualization. The aim of the present study was to elucidate why humans experience spontaneous decidualization and menstruation while most other mammals do not. We established a spontaneous decidualization model in pseudopregnant rats with vitamin E deficiency (VED) to investigate mechanisms associated with spontaneous decidualization. Vaginal smears were used to monitor bleeding while vitamin E levels were analyzed with a commercial vitamin E assay kit. Trypan blue staining was used to observe the implantation site at 5.5 days post-coitum (dpc). Uterine morphology, estradiol (E2) and progesterone levels, and the anti-oxidation system were evaluated at 5.5, 7.5, and 9.5 dpc. The proportion of rats in the VED group exhibiting endometrial bleeding gradually increased (5.9%, 32.3%, and 50%) over three consecutive cycles of pseudopregnancy. Vitamin E levels in the VED group were markedly lower compared to the control group in both the plasma and uterus, while the level of vitamin E in the liver did not differ between the control and VED groups. Spontaneous decidualization in the VED group was validated by histological examination and immunohistochemistry. At 5.5 dpc, the mean serum E2 level in the VED group was more than twice that of the control group. The mean total anti-oxidizing capability, catalase level, and glutathione peroxidase activity were significantly reduced in the decidualized portion of the VED group compared to controls, while the malondialdehyde level was also significantly higher in the decidualized portion of the VED group. We hypothesize that the E2 surge at 5.5 dpc and increasing levels of reactive oxygen species are responsible for spontaneous decidualization in VED rats.


Assuntos
Deciduoma/fisiopatologia , Estradiol/metabolismo , Complicações na Gravidez/metabolismo , Pseudogravidez/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Deficiência de Vitamina E/complicações , Deficiência de Vitamina E/metabolismo , Animais , Feminino , Gravidez , Pseudogravidez/complicações , Ratos Wistar
5.
Mol Reprod Dev ; 83(9): 780-791, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27500900

RESUMO

Irregular uterine bleeding is a major side effect of long-acting progestogen-only contraceptives in women, and is the primary reason women discontinue their use. In this study, a mouse model of endometrial breakdown was established using a subcutaneous progesterone implant to understand how irregular bleeding begins. Although progestogens sustained decidualization, endometrial breakdown was still observed in this model. We, therefore, hypothesized that endometrial breakdown might involve functional progesterone withdrawal. Using co-immunoprecipitation assays, we observed the constitutive activation of nuclear factor kappa-b (NF-κB) p65 and its interaction with the progesterone receptor (PGR); moreover, transcriptional activity of the PGR was also repressed by NF-κB activity in primary mouse and human decidual stromal cells that mimic progesterone maintenance. Yet the ratio of PGR-B to PGR-A was not increased in the mouse model. In vivo comparison of endometrial breakdown induced by progesterone withdrawal to that seen during sustained progesterone exposure, in the presence of NF-κB inhibitors, revealed that NF-κB-mediated functional progesterone withdrawal is involved in endometrial breakdown in this implant model. These data prompt further studies to determine the homology of this functional progesterone withdrawal mechanism in human endometrium. Mol. Reprod. Dev. 83: 780-791, 2016 © 2016 Wiley Periodicals, Inc.


Assuntos
Anticoncepcionais Orais Hormonais/efeitos adversos , Endométrio , Progesterona/metabolismo , Fator de Transcrição RelA/metabolismo , Doenças Uterinas , Hemorragia Uterina , Animais , Anticoncepcionais Orais Hormonais/farmacologia , Modelos Animais de Doenças , Endométrio/metabolismo , Endométrio/patologia , Feminino , Camundongos , Receptores de Progesterona/metabolismo , Doenças Uterinas/induzido quimicamente , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Hemorragia Uterina/induzido quimicamente , Hemorragia Uterina/metabolismo , Hemorragia Uterina/patologia
6.
Hum Reprod ; 30(9): 2160-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113661

RESUMO

STUDY QUESTION: How is vascular endothelial growth factor (VEGF) expression regulated by hypoxia inducible factor 1 alpha (HIF1A) during menstruation? SUMMARY ANSWER: After progesterone (P4) withdrawal, HIF1A was activated and it directly up-regulated VEGF mRNA expression and this regulation was the highest during endometrium breakdown in the mouse menstrual-like model. WHAT IS KNOWN ALREADY: VEGF, an important angiogenic factor, is known to be essential for endometrial repair, particularly in angiogenesis and re-epithelialization. However, its upstream regulation has not been fully clarified. HIF1 is the first transcription factor response to hypoxia and is closely associated with angiogenesis; it is also an upstream regulator of VEGF mRNA. STUDY DESIGN, SIZE, DURATION: We investigated the changes in the expression of HIF1A and VEGF after P4 withdrawal and after HIF1A inhibition. The total number of mice used was 62. The treatment duration in the mouse menstrual-like model was 8 days. PARTICIPANTS/MATERIALS, SETTING, METHODS: The mouse menstrual-like model and mouse and human decidual endometrial stromal cells were established to mimic menstruation. Protein and mRNA expressions of HIF1A and VEGF were investigated by immunohistochemistry, Western blot and quantitative PCR. The direct interaction between HIF1A and the Vegf promoter was also investigated by chromatin immunoprecipitation. HIF1A inhibition in vivo and in vitro was achieved by administration of an HIF1A inhibitor and by siRNA knockdown, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: HIF1A was translocated to the nucleus from 8 to 16 h after P4 withdrawal, while VEGF mRNA expression was the highest at 12 h. HIF1A directly bound to Vegf promoter during endometrial breakdown, which peaked at 12 h. HIF1A inhibition suppressed VEGF mRNA and protein expression in the mouse menstrual-like model and decidualized stromal cells. Inhibition of HIF1A also suppressed endometrial breakdown. LIMITATIONS, REASONS FOR CAUTION: Although HIF1A regulation of VEGF mRNA was confirmed in the mouse menstrual-like model and decidual endometrium stromal cells, the functional regulation of VEGF protein was not further determined. WIDER IMPLICATIONS OF THE FINDINGS: Here, we report that the functional regulation of VEGF was complicate in menstruation. We also report that HIF1A plays a key role in endometrial breakdown. STUDY FUNDING/COMPETING INTERESTS: The National Nature Science Foundation of China (No. 30901608), the National Basic Research Program of China (2010CB530403) and the National Science and Technology Support Program (No. 2012BAI32B05). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER: This study is not a clinical trial.


Assuntos
Decídua/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Menstruação/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Feminino , Humanos , Camundongos , Modelos Animais , RNA Mensageiro/metabolismo
7.
J Asian Nat Prod Res ; 16(6): 667-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24957473

RESUMO

Tanshinol (3-(3',4'-dihydroxyphenyl)-(2R)-lactic acid, TSL) is widely used in traditional Chinese medicine for the treatment of cardiovascular and cerebrovascular diseases. Here, we assessed whether TSL protected hippocampus and attenuated vascular dementia (VD) development in rats. The behavioral analysis showed that TSL could decrease the distance and latency time, and increase the swim speed in water maze in rats subjected to VD. TSL remarkably increased acetylcholine level and decreased acetylcholinesterase activity in rats subjected to VD. Likewise, TSL remarkably decreased malondialdehyde and increased superoxide dismutase levels in rats subjected to VD. Furthermore, treatment with TSL reduced the level of dead neurons in dentate gyrus. In addition, TSL upregulated growth-associated protein 43 (GAP43) and vascular endothelial growth factor (VEGF) expression and downregulated phosphorylated Akt (p-AKt) and phosphorylated glycogen synthase kinase (p-GSK3ß) expression in hippocampus in rats subjected to VD. These results suggest that TSL may be a potential compound in VD model.


Assuntos
Ácidos Cafeicos/farmacologia , Demência Vascular/tratamento farmacológico , Hipocampo/metabolismo , Animais , Apoptose/fisiologia , Ácidos Cafeicos/química , Modelos Animais de Doenças , Masculino , Malondialdeído/análise , Malondialdeído/sangue , Malondialdeído/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Medicina Tradicional Chinesa , Memória/efeitos dos fármacos , Estrutura Molecular , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/análise , Superóxido Dismutase/sangue , Superóxido Dismutase/metabolismo
8.
Colloids Surf B Biointerfaces ; 238: 113891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615392

RESUMO

The three-dimensional-printed Ti6Al4V implant (3DTi) has been widely accepted for the reconstruction of massive bone defects in orthopedics owing to several advantages, such as its tailored shape design, avoiding bone graft and superior bone-implant interlock. However, the osteoinduction activity of 3DTi is inadequate when applied clinically even though it exhibits osteoconduction. This study developes a comprehensive coatless strategy for the surface improvement of 3DTi through copper (Cu) ion implantation and ultraviolet (UV) photofunctionalization to enhance osteoinductivity. The newly constructed functional 3DTi (UV/Ti-Cu) achieved stable and controllable Cu doping, sustained Cu2+ releasing, and increased surface hydrophilicity. By performing cellular experiments, we determined that the safe dose range of Cu ion implantation was less than 5×1016 ions/cm2. The implanted Cu2+ enhanced the ALP activity and the apatite formation ability of bone marrow stromal cells (BMSCs) while slightly decreasing proliferation ability. When combined with UV photofunctionalization, cell adhesion and proliferation were significantly promoted and bone mineralization was further increased. Meanwhile, UV/Ti-Cu was conducive to the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, theoretically facilitating vascular coupling osteogenesis. In conclusion, UV/Ti-Cu is a novel attempt to apply two coatless techniques for the surface modification of 3DTi. In addition, it is considered a potential bone substrate for repairing bone defects.


Assuntos
Ligas , Adesão Celular , Cobre , Células Endoteliais da Veia Umbilical Humana , Osteogênese , Impressão Tridimensional , Titânio , Raios Ultravioleta , Animais , Humanos , Ligas/química , Ligas/farmacologia , Angiogênese , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cobre/química , Cobre/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Íons/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
10.
Bioact Mater ; 33: 223-241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38045570

RESUMO

Postoperative anatomical reconstruction and prevention of local recurrence after tumor resection are two vital clinical challenges in osteosarcoma treatment. A three-dimensional (3D)-printed porous Ti6Al4V scaffold (3DTi) is an ideal material for reconstructing critical bone defects with numerous advantages over traditional implants, including a lower elasticity modulus, stronger bone-implant interlock, and larger drug-loading space. Simvastatin is a multitarget drug with anti-tumor and osteogenic potential; however, its efficiency is unsatisfactory when delivered systematically. Here, simvastatin was loaded into a 3DTi using a thermosensitive poly (lactic-co-glycolic) acid (PLGA)-polyethylene glycol (PEG)-PLGA hydrogel as a carrier to exert anti-osteosarcoma and osteogenic effects. Newly constructed simvastatin/hydrogel-loaded 3DTi (Sim-3DTi) was comprehensively appraised, and its newfound anti-osteosarcoma mechanism was explained. Specifically, in a bone defect model of rabbit condyles, Sim-3DTi exhibited enhanced osteogenesis, bone in-growth, and osseointegration compared with 3DTi alone, with greater bone morphogenetic protein 2 expression. In our nude mice model, simvastatin loading reduced tumor volume by 59%-77 % without organic damage, implying good anti-osteosarcoma activity and biosafety. Furthermore, Sim-3DTi induced ferroptosis by upregulating transferrin and nicotinamide adenine dinucleotide phosphate oxidase 2 levels in osteosarcoma both in vivo and in vitro. Sim-3DTi is a promising osteogenic bone substitute for osteosarcoma-related bone defects, with a ferroptosis-mediated anti-osteosarcoma effect.

11.
CNS Neurosci Ther ; 30(8): e70001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39154359

RESUMO

AIMS: The parabrachial nucleus (PBN) promotes wakefulness states under general anesthesia. Recent studies have shown that glutamatergic neurons within the PBN play a crucial role in facilitating emergence from anesthesia. Our previous study indicates that vesicular glutamate transporter 2 (vglut2) expression neurons of the PBN extend into the extended amygdala (EA). However, the modulation of PBNvglut2-EA in general anesthesia remains poorly understood. This study aims to investigate the role of PBNvglut2-EA in alterations of consciousness during sevoflurane anesthesia. METHODS: We first validated vglut2-expressing neuron projections from the PBN to the EA using anterograde tracing. Then, we conducted immunofluorescence staining of c-Fos to investigate the role of the EA involved in the regulation of consciousness during sevoflurane anesthesia. After, we performed calcium fiber photometry recordings to determine the changes in PBNvglut2-EA activity. Lastly, we modulated PBNvglut2-EA activity under sevoflurane anesthesia using optogenetics, and electroencephalogram (EEG) was recorded during specific optogenetic modulation. RESULTS: The expression of vglut2 in PBN neurons projected to the EA, and c-Fos expression in the EA was significantly reduced during sevoflurane anesthesia. Fiber photometry revealed that activity in the PBNvglut2-EA pathway was suppressed during anesthesia induction but restored upon awakening. Optogenetic activation of the PBNvglut2-EA delayed the induction of anesthesia. Meanwhile, EEG recordings showed significantly decreased δ oscillations and increased ß and γ oscillations compared to the EYFP group. Furthermore, optogenetic activation of the PBNvglut2-EA resulted in an acceleration of awakening from anesthesia, accompanied by decreased δ oscillations on EEG recordings. Optogenetic inhibition of PBNvglut2-EA accelerated anesthesia induction. Surprisingly, we found a sex-specific regulation of PBNvglut2-EA in this study. The activity of PBNvglut2-EA was lower in males during the induction of anesthesia and decreased more rapidly during sevoflurane anesthesia compared to females. Photoactivation of the PBNvglut2-EA reduced the sensitivity of males to sevoflurane, showing more pronounced wakefulness behavior and EEG changes than females. CONCLUSIONS: PBNvglut2-EA is involved in the promotion of wakefulness under sevoflurane anesthesia. Furthermore, PBNvglut2-EA shows sex differences in the changes of consciousness induced by sevoflurane anesthesia.


Assuntos
Tonsila do Cerebelo , Anestésicos Inalatórios , Camundongos Endogâmicos C57BL , Neurônios , Núcleos Parabraquiais , Sevoflurano , Proteína Vesicular 2 de Transporte de Glutamato , Vigília , Sevoflurano/farmacologia , Animais , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Vigília/efeitos dos fármacos , Vigília/fisiologia , Camundongos , Anestésicos Inalatórios/farmacologia , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Optogenética/métodos , Eletroencefalografia
12.
Hum Reprod ; 28(6): 1670-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23512993

RESUMO

STUDY QUESTION: Is there a critical period of progesterone (P4) withdrawal in a mouse menstrual-like model, and at what time after P4 withdrawal endometrial breakdown become irreversible? STUDY ANSWER: Our results showed that a 12-16 h critical period of P4 withdrawal exists in the mouse menstrual-like model. WHAT IS KNOWN ALREADY: P4 withdrawal is the trigger for endometrial breakdown and shedding during menstruation. To date, the molecular mechanisms responsible for endometrial breakdown have not been fully elucidated. In an ovariectomized macaque model, P4 replacement could reduce or block menses during a period of 36-48 h after P4 withdrawal, but after this, P4 supplementation did not reduce or block menses. Thus, in the macaque, a critical period of P4 withdrawal lasting 36-48 h exists before menses. STUDY DESIGN, SIZE, DURATION: We created a mouse menstrual-like model and restored P4 at four time points. The total number of mice was 120 and the duration of treatment was 26 days. PARTICIPANTS, SETTING, METHODS: A mouse menstrual model was characterized by endometrial morphology and plasma P4 levels. P4 was then replaced at 8, 12, 16 and 20 h after the removal of P4 implants. Vaginal smears, endometrial morphology, plasma P4 levels and expression patterns of matrix metalloproteinases (MMP-2, MMP-3, MMP-9, MMP-10, MMP-11 and MMP-13) were investigated. MAIN RESULTS AND THE ROLE OF CHANGE: Replacement of P4 at 8 and 12 h blocked menstrual-like bleeding and endometrial shedding; however, replacement at 16 and 20 h did not suppress bleeding or shedding. Furthermore, P4 replacement at 12 h inhibited the expression of all latent or active MMPs; however, replacement at 16 h inhibited only pMMP-13. LIMITATIONS, REASONS FOR CAUTION: Although determination of the critical period in vivo using a mouse model was successfully demonstrated, the mechanisms of P4 regulation need to be further explored. WIDER IMPLICATIONS OF THE FINDINGS: The experimental opportunities provided by the mouse model will facilitate understanding the role of P4 in the regulation of menstruation and help to identify new targets for the clinical intervention of menstrual disorders.


Assuntos
Ciclo Estral/fisiologia , Progesterona/sangue , Animais , Ciclo Estral/sangue , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fatores de Tempo , Útero/anatomia & histologia , Útero/efeitos dos fármacos
13.
Reprod Biol ; 23(3): 100785, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392490

RESUMO

Menstruation is a specific physiological phenomenon in female humans that is regulated by complex molecular mechanisms. However, the molecular network involved in menstruation remains incompletely understood. Previous studies have suggested that C-X-C chemokine receptor 4 (CXCR4) is involved; however, how CXCR4 participates in endometrial breakdown remains unclear, as do its regulatory mechanisms. This study aimed to clarify the role of CXCR4 in endometrial breakdown and its regulation by hypoxia-inducible factor-1 alpha (HIF1A). We first confirmed that CXCR4 and HIF1A protein levels were significantly increased during the menstrual phase compared with the late secretory phase using immunohistochemistry. In our mouse model of menstruation, real-time PCR, western blotting, and immunohistochemistry showed that CXCR4 mRNA and protein expression levels gradually increased from 0 to 24 h after progesterone withdrawal during endometrial breakdown. HIF1A mRNA and HIF1A nuclear protein levels significantly increased and peaked at 12 h after progesterone withdrawal. Endometrial breakdown was significantly suppressed by the CXCR4 inhibitor AMD3100 and the HIF1A inhibitor 2-methoxyestradiol in our mouse model, and HIF1A inhibition also suppressed CXCR4 mRNA and protein expression. In vitro studies using human decidual stromal cells showed that CXCR4 and HIF1A mRNA expression levels were increased by progesterone withdrawal and that HIF1A knockdown significantly suppressed the elevation in CXCR4 mRNA expression. CD45+ leukocyte recruitment during endometrial breakdown was suppressed by both AMD3100 and 2-methoxyestradiol in our mouse model. Taken together, our preliminary findings suggest that endometrial CXCR4 expression is regulated by HIF1A during menstruation and may promote endometrial breakdown, potentially via leukocyte recruitment.


Assuntos
Menstruação , Progesterona , Animais , Feminino , Humanos , Camundongos , 2-Metoxiestradiol/metabolismo , Endométrio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Leucócitos/metabolismo , Progesterona/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , RNA Mensageiro/metabolismo
14.
Hum Reprod ; 27(7): 2096-106, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22587999

RESUMO

BACKGROUND: Progesterone-withdrawal (WP)-induced endometrial breakdown occurs in both physiological and pathological processes such as menstruation and abortion. However, the underlying mechanisms are not clearly understood. As the nuclear factor-κB (NF-κB) pathway has been proposed to play a role in endometrial breakdown, we tested this hypothesis using RU486-induced mouse menstruation-like model. METHODS: The activation of NF-κB was evaluated by immunohistochemistry, western blot and immunofluorescence. The expression of matrix metalloproteinase-9 (MMP9) was analyzed by real-time PCR and its proteins by gelatin zymography and western blot. Chromatin immunoprecipitation was used to investigate the direct binding of NF-κB to MMP9 gene promoter. Inhibitors of NF-κB were used to block its signal in vivo and in vitro to analyze the function of NF-κB in the tissue breakdown process. RESULTS: Administration of RU486 resulted in increased phospho-IκB levels and nuclear translocation of p65 in decidual stromal cells, accompanied by the up-regulation of NF-κB inducing kinase and IκB kinase ß mRNA. The NF-κB inhibitor, 'pyrrolidine dithiocarbamate' partially suppressed the RU486-induced endometrial breakdown, thus verifying the role of this pathway in vivo. MMP9 was up- and down-regulated following the NF-κB activation and inhibition, respectively. RU486 stimulated recruitment of NF-κB p65 to the MMP9 promoter and further increased its expression. Effects of NF-κB activation and inactivation on MMP9 expression were further explored in human stromal cells in vitro. A similar MMP9 expression pattern was observed in cultured human, as well as mouse, decidual stromal cells following RU486 treatment. CONCLUSIONS: The activation of the NF-κB pathway induces downstream target genes, including MMP9 from stromal cells to facilitate tissue breakdown in mouse uterus, highlighting the likelihood that this regulatory pattern exists in the human endometrium.


Assuntos
Endométrio/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Mifepristona/farmacologia , NF-kappa B/metabolismo , Animais , Núcleo Celular/metabolismo , Endométrio/patologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Modelos Animais , Progesterona/metabolismo , Regiões Promotoras Genéticas , Células Estromais/citologia , Útero/efeitos dos fármacos
16.
Ultrastruct Pathol ; 36(3): 185-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22559046

RESUMO

BACKGROUND: Sperm head vacuoles are easily detectable in human spermatozoa under the electron microscope. A sperm head vacuole is considered abnormal when it exceeds 20% of the head's cross-sectional area. The authors report a rare case of primary spermatozoa deformity with 100% vacuolated head and evaluate the correlation between presence of head vacuoles/nucleus vacuoles and abnormal transformation of nucleoprotamine types, defects of nucleoprotamine, and gene disorders of chromatin/chromosome/spermatogenesis. METHODS: A 43-year-old male patient with infertility came to the Reproduction Health Center, Hebei, China. Semen was examined in accordance with the WHO criteria, and the spermatozoa were counted. Two hundred spermatozoa were observed both under light microscope and the electronic microscope. RESULTS: About 50% of the spermatozoa had head deformities. In the intact spermatozoa, the heads were 100% vacuolated. Under ultrastructural observation, abnormalities were observed and two major types of spermatozoa were detected. In the head of those incompletely mature spermatozoa, four kinds of the nucleus vacuoles were observed. CONCLUSION: Abnormal spermatozoa with head vacuoles account for the patient infertility.


Assuntos
Infertilidade Masculina/patologia , Cabeça do Espermatozoide/ultraestrutura , Vacúolos/ultraestrutura , Adulto , Núcleo Celular/ultraestrutura , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Análise do Sêmen
17.
Gels ; 8(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421567

RESUMO

The significant efforts being made towards the utilization of artificial soft materials holds considerable promise for developing tissue engineering scaffolds for bone-related diseases in clinics. However, most of these biomaterials cannot simultaneously satisfy the multiple requirements of high mechanics, good compatibility, and biological osteogenesis. In this study, an osteogenic hybrid hydrogel between the amine-functionalized bioactive glass (ABG) and 4-armed poly(ethylene glycol) succinimidyl glutarate-gelatin network (SGgel) is introduced to flexibly adhere onto the defective tissue and to subsequently guide bone regeneration. Relying on the rapid ammonolysis reaction between amine groups (-NH2) of gelatin and ABG components and N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG polymer, the hydrogel networks were formed within seconds, offering a multifunctional performance, including easy injection, favorable biocompatibility, biological and mechanical properties (compressive strength: 4.2 MPa; storage modulus: 104 kPa; adhesive strength: 56 kPa), which could facilitate the stem cell viability, proliferation, migration and differentiation into osteocytes. In addition, the integration between the SGgel network and ABG moieties within a nano-scale level enabled the hybrid hydrogel to form adhesion to tissue, maintain the durable osteogenesis and accelerate bone regeneration. Therefore, a robust approach to the simultaneously satisfying tough adhesion onto the tissue defects and high efficiency for bone regeneration on a mouse skull was achieved, which may represent a promising strategy to design therapeutic scaffolds for tissue engineering in clinical applications.

18.
Front Bioeng Biotechnol ; 10: 961227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177182

RESUMO

Significant efforts on construction of smart drug delivery for developing minimally invasive gelling system to prolong local delivery of bisphosphonates are considered as promising perspectives for the bone-related diseases, which provide the hydrogels with unique bioactivities for bone repair in clinic. Herein, we have constructed an alendronate (ALN)-conjoined injectable tetra-PEG hydrogel with excellent biocompatibility, uniform network, and favorable mechanical properties in one-pot strategy. In views of the quick ammonolysis reaction between N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG and amine groups of tetra-PEG-NH2 polymer and ALN molecules, the uniform networks were formed within seconds along with the easy injection, favorable biocompatibility and mechanical properties for hydrogel scaffolds. On account of the simultaneous physical encapsulation and chemical linkage of the ALN within the hydrogels, the ALN-conjoined tetra-PEG hydrogel exhibited a sustained drug release delivery that could persistently and effectively facilitate viability, growth, proliferation, and osteogenesis differentiation of stem cells, thereby allowing the consequent adaptation of hydrogels into the bone defects with irregular shapes, which endowed the ALN-conjoined tetra-PEG hydrogel with depot formulation capacity for governing the on-demand release of ALN drugs. Consequently, the findings imply that these drug-based tetra-PEG hydrogels mediate optimal release of therapeutic cargoes and effective promotion of in situ bone regeneration, which will be broadly utilized as therapeutic scaffolds in tissue engineering and regenerative medicine.

19.
Bioact Mater ; 6(12): 4542-4557, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34027239

RESUMO

Surgical resection and perioperative adjuvant chemotherapy-based therapies have improved the prognosis of patients with osteosarcoma; however, intraoperative bone defects, local tumour recurrence, and chemotherapy-induced adverse effects still affect the quality of life of patients. Emerging 3D-printed titanium alloy (Ti6Al4V) implants have advantages over traditional implants in bone repair, including lower elastic modulus, lower stiffness, better bone conduction, more bone in-growth, stronger mechanical interlocking, and lager drug-loading capacity by their inherent porous structure. Here, cisplatin, a clinical first-line anti-osteosarcoma drug, was loaded into Ti6Al4V implants, within a PLGA-PEG-PLGA thermo-sensitive hydrogel, to construct bone substitutes with both anti-osteosarcoma and bone-repair functions. The optimal concentrations of cisplatin (0.8 and 1.6 mg/mL) were first determined in vitro. Thereafter, the anti-tumour effect and biosafety of the cisplatin/hydrogel-loaded implants, as well as their bone-repair potential were evaluated in vivo in tumour-bearing mouse, and bone defect rabbit models, respectively. The loading of cisplatin reduced tumour volume by more than two-thirds (from 641.1 to 201.4 mm3) with negligible organ damage, achieving better anti-tumour effects while avoiding the adverse effects of systemic cisplatin delivery. Although bone repair was hindered by cisplatin loading at 4 weeks, no difference was observed at 8 weeks in the context of implants with versus without cisplatin, indicating acceptable long-term stability of all implants (with 8.48%-10.04% bone in-growth and 16.94%-20.53% osseointegration). Overall, cisplatin/hydrogel-loaded 3D-printed Ti6Al4V implants are safe and effective for treating osteosarcoma-caused bone defects, and should be considered for clinical use.

20.
Tohoku J Exp Med ; 220(1): 77-82, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20046055

RESUMO

Mifepristone is a synthetic steroid compound that has been applied to terminate early pregnancy for many years. However, about 15% of the women undergo failure in termination of early pregnancy, the causes of which remain largely unknown. We herein selected estrogen receptor 1 gene (ESR1) as a candidate gene to determine whether single nuclear polymorphisms (SNPs) in ESR1 were associated with the failure of mifepristone-induce abortion. The subjects recruited were 30 subjects that failed to abort and 60 subjects with a successful medical abortion. Three SNPs, T-397C (rs2234693), C325G (rs1801132), and G2014A (rs2228480), were analyzed by PCR, followed by restriction fragment length polymorphism (RFLP) analysis. The latter two polymorphic sites are located in the protein-coding region, but do not alter the amino acid. Among the three SNPs examined, we found the significant role of the G2014A polymorphism; namely, the distribution of the GG, AG and AA genotypes was different between the failure group and the success group. The frequency of the GG (G2014G) genotype was higher in the failure group (86.7%) than that in the success group (60.0%) (p = 0.030), while the frequency of the G2014A heterozygote was lower in the failure group (6.7%) than in the success group (28.3%) (p = 0.013). Moreover, the frequency of the G allele was higher in the failure group (90%) and lower in the success group (10.0%) (p = 0.013). These results indicate that the GG genotype of the G2014A polymorphism is associated with the risk of failure in the mifepristone-induced abortion.


Assuntos
Aborto Induzido , Receptor alfa de Estrogênio/genética , Mifepristona/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Adulto , Distribuição por Idade , Feminino , Frequência do Gene/genética , Genótipo , Humanos , Gravidez , Falha de Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa