Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Apoptosis ; 27(1-2): 133-148, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35147801

RESUMO

This study aimed to determine the effects of SKI on interleukin (IL)-1ß-induced apoptosis of nucleus pulposus (NP) cells, intervertebral disc degeneration (IDD), and the Wnt signaling pathway. NP tissue specimens of different Pfirrmann grades (II-V) were collected from patients with different grades of IDD. Real-time polymerase chain reaction and western blotting were used to compare SKI mRNA and protein expression in NP tissues from patients. Using the IL-1ß-induced IDD model, NP cells were infected with lentivirus-coated si-SKI to downregulate the expression of SKI and treated with LiCl to evaluate the involvement of the Wnt/ß-catenin signaling pathway. Western blotting, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect NP cell apoptosis, extracellular matrix (ECM) metabolism, and related protein expression changes in the Wnt/ß-catenin signaling pathway. To investigate the role of SKI in vivo, a rat IDD model was established by needle puncture of the intervertebral disc. Rats were injected with lentivirus-coated si-SKI and evaluated by magnetic resonance imaging (MRI), and hematoxylin and eosin (HE) and safranin O staining. SKI expression positively correlated with the severity of human IDD. In the IL-1ß-induced NP cell degeneration model, SKI expression increased significantly and reached a peak at 24 h. SKI knockdown protected against IL-1ß-induced NP cell apoptosis and ECM degradation. LiCl treatment reversed the protective effects of si-SKI on NP cells. Furthermore, lentivirus-coated si-SKI injection partially reversed the NP tissue damage in the IDD model in vivo. SKI knockdown reduced NP cell apoptosis and ECM degradation by inhibiting the Wnt/ß-catenin signaling pathway, ultimately protecting against IDD. Therefore, SKI may be an effective target for IDD treatment.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Apoptose/genética , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/terapia , Núcleo Pulposo/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
2.
Int J Med Sci ; 18(13): 2799-2813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220308

RESUMO

Intervertebral disc (IVD) degeneration (IDD) is a multifactorial pathological process associated with low back pain (LBP). The pathogenesis is complicated, and the main pathological changes are IVD cell apoptosis and extracellular matrix (ECM) degradation. Apoptotic cell loss leads to ECM degradation, which plays an essential role in IDD pathogenesis. Apoptosis regulation may be a potential attractive therapeutic strategy for IDD. Previous studies have shown that IVD cell apoptosis is mainly induced by the death receptor pathway, mitochondrial pathway, and endoplasmic reticulum stress (ERS) pathway. This article mainly summarizes the factors that induce IDD and apoptosis, the relationship between the three apoptotic pathways and IDD, and potential therapeutic strategies. Preliminary animal and cell experiments show that targeting apoptotic pathway genes or drug inhibition can effectively inhibit IVD cell apoptosis and slow IDD progression. Targeted apoptotic pathway inhibition may be an effective strategy to alleviate IDD at the gene level. This manuscript provides new insights and ideas for IDD therapy.


Assuntos
Degeneração do Disco Intervertebral/tratamento farmacológico , Disco Intervertebral/patologia , Dor Lombar/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Disco Intervertebral/citologia , Disco Intervertebral/efeitos dos fármacos , Degeneração do Disco Intervertebral/complicações , Dor Lombar/etiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/métodos , Receptores de Morte Celular/antagonistas & inibidores , Receptores de Morte Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Br J Neurosurg ; : 1-6, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184600

RESUMO

OBJECTIVE: To compare the new zero-profile (Zero-P) fusion cage with regular cage and plate (CP) in the treatment of anterior cervical single-level cervical degenerative diseases. METHODS: Patients operated from January 2013 to August 2018 were enrolled. They were divided into the Zero-P group (n = 74 cases) and CP groups (n = 116 cases). Follow-up assessment was at 1, 3, 12, and 24 months after surgery, including the incidence of dysphagia, visual analogue scale (VAS) score, Japanese orthopaedic association (JOA)score, C2-C7 Cobb angle, intervertebral disc height (IDH) and adjacent joint degeneration. RESULTS: The operation time and blood loss of patients in Zero-P group were less than those in the CP group, and there was no difference in hospitalization time. All 190 patients were followed up for 24 to 72 months, with an average of 35.29 months. In terms of clinical outcomes, vas and JOA scores of the two groups were significantly improved at one month and the last follow-up. The incidence of dysphagia in the Zero-P group was lower than that in the CP group. On radiological effects, Cobb angle and IDH showed significant correction in both groups, but the degeneration rate of adjacent joints in the Zero-P group was lower than the CP group. CONCLUSIONS: In ACDF, the clinical and radiological results of Zero-P and CP devices are satisfactory, but Zero-P cage may be superior in operation time, blood loss, the incidence of dysphagia and adjacent joint degeneration.

4.
Curr Gene Ther ; 22(4): 291-302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34636308

RESUMO

Bone Marrow Mesenchymal Stem Cells (BMSCs), multidirectional cells with self-renewal capacity, can differentiate into many cell types and play essential roles in tissue healing and regenerative medicine. Cell experiments and in vivo research in animal models have shown that BMSCs can repair degenerative discs by promoting cell proliferation and expressing Extracellular Matrix (ECM) components, such as type II collagen and protein-polysaccharides. Delaying or reversing the Intervertebral Disc Degeneration (IDD) process at an etiological level may be an effective strategy. However, despite increasingly in-depth research, some deficiencies in cell transplantation timing and strategy remain, preventing the clinical application of cell transplantation. Exosomes exhibit the characteristics of the mother cells from which they are secreted and can inhibit Nucleus Pulposus Cell (NPC) apoptosis and delay IDD through intercellular communication. Furthermore, the use of exosomes effectively avoids problems associated with cell transplantation, such as immune rejection. This manuscript introduces almost all of the BMSCs and exosomes derived from BMSCs (BMSCs-Exos) described in the IDD literature. Many challenges regarding the use of cell transplantation and therapeutic exosome intervention for IDD remain to be overcome.


Assuntos
Exossomos , Degeneração do Disco Intervertebral , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Exossomos/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , Células-Tronco Mesenquimais/metabolismo
5.
Am J Transl Res ; 13(3): 882-897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841628

RESUMO

Osteosarcoma (OS) is a rare soft-tissue malignant tumor with high lung metastasis and mortality rates. Preoperative chemotherapy, surgical resection of the lesion and postoperative chemotherapy are still the main treatments for osteosarcoma. The prognosis, however, is poor for patients with nonresectable, primary metastatic or relapsed disease. Recent studies have shown that targeted therapy for OS based on the characteristics of exosomes is very attractive. Exosomes are nanosized extracellular vesicles (EVs) that participate in cell-to-cell communication by transporting biologically active cargo molecules, causing changes in OS cell function and playing important roles in OS disease progression. With the characteristics of secretory cells, exosomes transport cargo (e.g., microRNAs) that can be used to detect the progress of a disease and can serve as markers and/or therapeutic targets for clinical diagnosis of OS. In this review, the roles of exosomes in OS pathogenesis, invasion, metastasis, drug resistance, diagnosis and treatment are summarized. In addition, this article elaborates a series of challenges to overcome before exosomes are applied in clinical practice and provides suggestions based on current evidence for the direction of future research.

6.
Sci Rep ; 11(1): 7032, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782454

RESUMO

Osteoarthritis (OA) is a chronic degenerative disease of the bone and joints. Immune-related genes and immune cell infiltration are important in OA development. We analyzed immune-related genes and immune infiltrates to identify OA diagnostic markers. The datasets GSE51588, GSE55235, GSE55457, GSE82107, and GSE114007 were downloaded from the Gene Expression Omnibus database. First, R software was used to identify differentially expressed genes (DEGs) and differentially expressed immune-related genes (DEIRGs), and functional correlation analysis was conducted. Second, CIBERSORT was used to evaluate infiltration of immune cells in OA tissue. Finally, the least absolute shrinkage and selection operator logistic regression algorithm and support vector machine-recurrent feature elimination algorithm were used to screen and verify diagnostic markers of OA. A total of 711 DEGs and 270 DEIRGs were identified in this study. Functional enrichment analysis showed that the DEGs and DEIRGs are closely related to cellular calcium ion homeostasis, ion channel complexes, chemokine signaling pathways, and JAK-STAT signaling pathways. Differential analysis of immune cell infiltration showed that M1 macrophage infiltration was increased but that mast cell and neutrophil infiltration were decreased in OA samples. The machine learning algorithm cross-identified 15 biomarkers (BTC, PSMD8, TLR3, IL7, APOD, CIITA, IFIH1, CDC42, FGF9, TNFAIP3, CX3CR1, ERAP2, SEMA3D, MPO, and plasma cells). According to pass validation, all 15 biomarkers had high diagnostic efficacy (AUC > 0.7), and the diagnostic efficiency was higher when the 15 biomarkers were fitted into one variable (AUC = 0.758). We developed 15 biomarkers for OA diagnosis. The findings provide a new understanding of the molecular mechanism of OA from the perspective of immunology.


Assuntos
Osteoartrite/diagnóstico , Biomarcadores/metabolismo , Redes Reguladoras de Genes , Humanos , Osteoartrite/genética , Osteoartrite/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa