Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Immunity ; 55(6): 1067-1081.e8, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35659337

RESUMO

Immunoregulatory B cells impede antitumor immunity through unknown features and mechanisms. We report the existence of leucine-tRNA-synthase-2 (LARS2)-expressing B cell (LARS B) subset with a transforming growth factor-ß1 (TGF-ß1)-dominant regulatory feature in both mouse and human progressive colorectal cancer (CRC). Of note, LARS B cells exhibited a leucine nutrient preference and displayed active mitochondrial aminoacyl-tRNA biosynthesis. They were located outside the tertiary lymphoid structure and correlated with colorectal hyperplasia and shortened survival in CRC patients. A leucine diet induced LARS B cell generation, whereas LARS B cell deletion by Lars2 gene ablation or leucine blockage repressed CRC immunoevasion. Mechanistically, LARS2 programmed mitochondrial nicotinamide adenine dinucleotide (NAD+) regeneration and oxidative metabolism, thus determining the regulatory feature of LARS B cells in which the NAD-dependent protein deacetylase sirtuin-1 (SIRT1) was involved. We propose a leucine-dieting scheme to inhibit LARS B cells, which is safe and useful for CRC therapy.


Assuntos
Aminoacil-tRNA Sintetases , Neoplasias Colorretais , Animais , Humanos , Leucina , Camundongos , Mitocôndrias/metabolismo , NAD/metabolismo , RNA de Transferência
3.
Hepatology ; 77(3): 745-759, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35243663

RESUMO

BACKGROUND AND AIMS: IL-10-producing regulatory B cells (IL-10 + B cells), a dominant regulatory B cell (Breg) subset, foster tumor progression. However, the mechanisms underlying their generation in HCC are poorly understood. Ten-eleven translocation-2 (TET2), a predominant epigenetic regulatory enzyme in B cells, regulates gene expression by catalyzing demethylation of 5-methylcytosine into 5-hydroxymethyl cytosine (5hmC). In this study, we investigated the role of TET2 in IL-10 + B cell generation in HCC and its prospects for clinical application. APPROACH AND RESULTS: TET2 activation in B cells triggered by oxidative stress from the HCC microenvironment promoted IL-10 expression, whereas adoptive transfer of Tet2 -deficient B cells suppressed HCC progression. The aryl hydrocarbon receptor is required for TET2 to hydroxylate Il10 . In addition, high levels of IL-10, TET2, and 5hmc in B cells indicate poor prognosis in patients with HCC. Moreover, we determined TET2 activity using 5hmc in B cells to evaluate the efficacy of anti-programmed death 1 (anti-PD-1) therapy. Notably, TET2 inhibition in B cells facilitates antitumor immunity to improve anti-PD-1 therapy for HCC. CONCLUSIONS: Our findings propose a TET2-dependent epigenetic intervention targeting IL-10 + B cell generation during HCC progression and identify the inhibition of TET2 activity as a promising combination therapy with immune checkpoint inhibitors for HCC.


Assuntos
Linfócitos B Reguladores , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , 5-Metilcitosina , Linfócitos B Reguladores/metabolismo , Linfócitos B Reguladores/patologia , Carcinoma Hepatocelular/patologia , Interleucina-10 , Neoplasias Hepáticas/patologia , Microambiente Tumoral
4.
Biochem Biophys Res Commun ; 644: 112-121, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36640665

RESUMO

Regulatory B cells (Bregs) contribute to tumor immunosuppression. However, how B cells acquire their regulatory features in tumors remain unclear. Exosomes are important messengers that transmit tumor information to remodel tumor immunity. Here we revealed that tumor-derived exosomes drive Bregs to suppress anti-tumor immunity by delivering long non-coding RNAs (lncRNAs). HOTAIR was screened by lncRNA profiling in both colorectal cancer (CRC)-derived exosomes and infiltrating B cells. Tumor-derived HOTAIR polarized B cells toward a regulatory feature marked by programmed cell death-ligand 1 (PDL1) in CRC, and induced PDL1+ B cells to suppress CD8+ T cell activity. Exosomal HOTAIR bound to and protected pyruvate kinase M2 (PKM2) against ubiquitination degradation, resulting in STAT3 activation and PDL1 expression. Results from CRC patients showed a positive correlation between exosomal HOTAIR and tumor-infiltrating PDL1+ B cells. These findings reveal how B cells acquire PDL1-dominant regulatory feature in CRC, implying the clinical significance of exosomal therapy targeting HOTAIR.


Assuntos
Neoplasias Colorretais , Exossomos , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/patologia , Exossomos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linfoma de Células B/imunologia
5.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069438

RESUMO

As plant-specific transcription factors, the TIFY family genes are involved in the responses to a series of biotic and abiotic stresses and the regulation of the development of multiple organs. To explore the potential roles of the TIFY gene family in shoot branching, which can shape plant architecture and finally determine seed yield, we conducted comprehensive genome-wide analyses of the TIFY gene family in Brassica napus. Here, HMMER search and BLASTp were used to identify the TIFY members. A total of 70 TIFY members were identified and divided into four subfamilies based on the conserved domains and motifs. These TIFY genes were distributed across 19 chromosomes. The predicted subcellular localizations revealed that most TIFY proteins were located in the nucleus. The tissue expression profile analyses indicated that TIFY genes were highly expressed in the stem, flower bud, and silique at the transcriptional level. High-proportioned activation of the dormant axillary buds on stems determined the branch numbers of rapeseed plants. Here, transcriptome analyses were conducted on axillary buds in four sequential developing stages, that is, dormant, temporarily dormant, being activated, and elongating (already activated). Surprisingly, the transcription of the majority of TIFY genes (65 of the 70) significantly decreased on the activation of buds. GO enrichment analysis and hormone treatments indicated that the transcription of TIFY family genes can be strongly induced by jasmonic acid, implying that the TIFY family genes may be involved in the regulation of jasmonic acid-mediated branch development. These results shed light on the roles of TIFY family genes in plant architecture.


Assuntos
Brassica napus , Brassica napus/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas , Filogenia
6.
Immunology ; 166(4): 444-457, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569110

RESUMO

B lymphocyte-mediated humoral immune response is essential for protection against infectious diseases. Deeper research in B cell biology, particularly metabolism is required for the better understanding of its properties in homeostasis and in diseases. Emerging immunometabolism, including anabolism and catabolism, has tremendously impacts on immune cells from development to function and markedly advances our view on immunoregulation. Growing evidence suggests that the ultimate effect of intracellular metabolism on immune cell functions is not only influenced by the external stimuli but also by the balance of the different metabolic pathways. However, B cell immunometabolism is not deeply investigated like T cells. The complex development and differentiation processes of B cell subsets have left many untouched, but fundamental aspects in B cell metabolism. Available evidence demonstrated that the intracellular metabolism has the ubiquitous impact on B cell fate and function decisions at the transcriptional regulation and signal transduction processes. In this review, we update the recent development in the immunometabolism of B cells with the latest findings including the immune-metabolic steering on B cell development, differentiation, and function skewing, and emphasis on how immunometabolism landscape may shape B cell functions in metabolic, autoimmune, and inflammatory disorders. The metabolic interaction of B cells with other immune cells in disease context will also be discussed.


Assuntos
Imunidade , Redes e Vias Metabólicas , Linfócitos B , Diferenciação Celular , Homeostase
7.
Ren Fail ; 44(1): 1604-1614, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36190837

RESUMO

Antibody-mediated rejection (AMR) has a strongly negative impact on long-term renal allograft survival. Currently, no recognized effective treatments are available, especially for chronic antibody-mediated rejection (CAMR). Donor-specific antibodies (DSAs) secreted by long-lived plasma cells and memory B cells are acknowledged as biomarkers of AMR. Nevertheless, it may be too late for the DSA routine examination production since DSAs may have binded to graft vascular endothelial cells through complement-dependent or complement-independent pathways. Therefore, methods to effectively monitor memory B cells and long-lived plasma cells and subsequently prevent DSA production are key to reducing the adverse effects of AMR. Therefore, this review mainly summarizes the production pathways of memory B cells and long-lived plasma cells and provides suggestions for the prevention of AMR after transplantation.


Assuntos
Isoanticorpos , Transplante de Rim , Biomarcadores , Células Endoteliais , Rejeição de Enxerto , Sobrevivência de Enxerto , Antígenos HLA/farmacologia , Transplante de Rim/efeitos adversos , Células B de Memória , Plasmócitos
8.
Adv Exp Med Biol ; 1254: 87-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32323272

RESUMO

B cells are typically characterized by their ability to produce antibodies, function as secondary antigen-present cells, and produce various immunoregulatory cytokines. The regulatory B (Breg)-cell population is now widely accepted as an important modulatory component of the immune system that suppresses inflammation. Recent studies indicate that Breg-cell populations are small under physiological conditions but expand substantially in both human patients and murine models of chronic inflammatory diseases, autoimmune diseases, infection, transplantation, and cancer. Almost all B-cell subsets can be induced to form Breg cells. In addition, there are unique Breg-cell subsets such as B10 and Tim-1+ B cells. Immunoregulatory function may be mediated by production of cytokines such as IL-10 and TGF-ß and ensuing suppression of T cells, by direct cell-cell interactions, and (or) by altering the immune microenvironment. In this chapter, we describe in detail the discovery of Breg cells, their phenotypes, differentiation, function, contributions to disease, and therapeutic potential.


Assuntos
Linfócitos B Reguladores , Animais , Doença , Humanos , Interleucina-10 , Linfócitos T , Fator de Crescimento Transformador beta
9.
Immunology ; 156(1): 56-68, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171602

RESUMO

B lymphocytes, known as antibody producers, mediate tumor cell destruction in the manner of antibody-dependent cell-mediated cytotoxicity; however, their anti-tumor function seems to be weakened during tumorigenesis, while the underlying mechanisms remain unclear. In this study, we found that IgG mediated anti-tumor effects, but IgG-producing B cells decreased in various tumors. Considering the underlying mechanism, glycometabolism was noteworthy. We found that tumor-infiltrating B cells were glucose-starved and accompanied by a deceleration of glycometabolism. Both inhibition of glycometabolism and deprivation of glucose through tumor cells, or glucose-free treatment, reduced the differentiation of B cells into IgG-producing cells. In this process, special AT-rich sequence-binding protein-1 (SATB1) was significantly silenced in B cells. Down-regulating SATB1 by inhibiting glycometabolism or RNA interference reduced the binding of signal transducer and activator of transcription 6 (STAT6) to the promoter of germline Cγ gene, subsequently resulting in fewer B cells producing IgG. Our findings provide the first evidence that glycometabolic inhibition by tumorigenesis suppresses differentiation of B cells into IgG-producing cells, and altering glycometabolism may be promising in improving the anti-tumor effect of B cells.


Assuntos
Adenocarcinoma/imunologia , Linfócitos B/metabolismo , Neoplasias Colorretais/imunologia , Glucose/metabolismo , Neoplasias Pulmonares/imunologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Neoplasias/imunologia , Idoso , Animais , Azoximetano , Linfócitos B/imunologia , Células Cultivadas , Neoplasias Colorretais/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/genética , Fator de Transcrição STAT6/metabolismo
10.
Gastroenterology ; 154(3): 637-651.e7, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29031499

RESUMO

BACKGROUND & AIMS: B cells infiltrate tumors, but little is known about how they affect tumor growth and progression. microRNA15A (MIR15A or miRNA15A) and microRNA16-1 (MIR16-1 or miRNA16-1) regulate cell proliferation, apoptosis, and drug resistance. We investigated their involvement in B-cell-mediated immune suppression by colorectal tumors. METHODS: Mice with disruptions of the gene cluster that encodes MIR15A and MIR16-1 (knockout mice), and control (C57BL/B6) mice were given azoxymethane with dextran sodium sulfate (AD) to induce formation of colorectal tumors. Mice were given anti-CD20 to delete B cells, or injections of agomir to increase MIR15A and MIR16-1. Proliferation of CD8+T cells was measured by carboxyfluorescein-succinimidyl-ester analysis. Colon tissues were collected from mice and analyzed by flow cytometry, microRNA (miRNA) sequencing, and for cytokine production. Intestinal epithelial cells (IECs) were isolated and transfected with miRNA mimics, to identify their targets. We analyzed miRNA expression patterns and quantified B cells in colorectal cancer tissue microarrays derived from 90 patients who underwent surgical resection, from July 2006 through April 2008, in Shanghai, China; expression data were compared with clinical outcomes. RESULTS: Tumors that developed in knockout mice following administration of AD were larger and contained greater numbers of B cells than tumors that grew in control mice. Most of the B cells in the tumors were positive for immunoglobulin A (IgA+). IgA+ B cells expressed high levels of immune regulatory molecules (programmed death ligand 1, interleukin 10, and transforming growth factor beta), and repressed the proliferation and activation of CD8+ T cells. Levels of MIR15A and MIR16-1 were reduced in colon tumors from mice, compared with nontumor colon tissue. Incubation of IECs with IL17A reduced expression of MIR15A and MIR16-1. Transgenic expression of MIR15A and MIR16-1 in IECs decreased activation of NF-κB and STAT1 by reducing expression of I-kappaB kinases; this resulted in reduced production of chemokine (C-X-C motif) ligands 9 and 10 and decreased chemotaxis of IgA+ B cells. Tumors in mice injected with AD and agomir grew more slowly than tumors in mice not given in agomir and contained fewer IgA+ B cells. We found a negative correlation between levels of MIR15A and MIR16-1 and numbers of IgA+B cells in human colorectal tumor tissues; high levels of MIR15A and MIR16-1 and low numbers of IgA+B cells were associated with longer survival times of patients. CONCLUSIONS: We found increased levels of MIR15A and MIR16-1 to reduce numbers of IgA+ B cells in colorectal tumor tissues and correlate with increased survival time of patients. In mice that lack MIR15A and MIR16-1, colon tumors grow more rapidly and contain increased numbers of IgA+ B cells. MIR15A and MIR16-1 appear to activate signaling pathways required for B-cell-mediated immune suppression.


Assuntos
Linfócitos B Reguladores/metabolismo , Quimiotaxia de Leucócito , Neoplasias Colorretais/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Evasão Tumoral , Animais , Azoximetano , Linfócitos B Reguladores/imunologia , Proliferação de Células , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/imunologia , Quimiocina CXCL9/metabolismo , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Sulfato de Dextrana , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Quinase I-kappa B/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , NF-kappa B/metabolismo , Fenótipo , Fator de Transcrição STAT1/metabolismo , Fatores de Tempo , Carga Tumoral
11.
Immunology ; 155(3): 356-366, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29969845

RESUMO

Regulatory T (Treg) cells play an essential role in the maintenance of intestinal homeostasis. In Peyer's patches (PPs), which comprise the most important IgA induction site in the gut-associated lymphoid tissue, Treg cells promote IgA isotype switching. However, the mechanisms underlying their entry into PPs and isotype switching facilitation in activated B cells remain unknown. This study, based on the dextran sulphate sodium (DSS)-induced colitis model, revealed that Treg cells are significantly increased in PPs, along with CD11b+ B-cell induction. Immunofluorescence staining showed that infiltrated Treg cells were located around CD11b+ B cells and produced transforming growth factor-ß, thereby inducing IgA+ B cells. Furthermore, in vivo and in vitro studies revealed that CD11b+ B cells in PPs had the capacity to recruit Treg cells into PPs rather than promoting their proliferation. Finally, we found that Treg cell recruitment was mediated by the chemokine CXCL9 derived from CD11b+ B cells in PPs. These findings demonstrate that CD11b+ B cells induced in PPs during colitis actively recruit Treg cells to accomplish IgA isotype switch in a CXCL9-dependent manner.


Assuntos
Linfócitos B/imunologia , Antígeno CD11b/imunologia , Quimiocina CXCL9/imunologia , Colite/imunologia , Nódulos Linfáticos Agregados/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos B/patologia , Antígeno CD11b/genética , Quimiocina CXCL9/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Nódulos Linfáticos Agregados/patologia , Linfócitos T Reguladores/patologia
12.
Hepatology ; 62(5): 1563-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26207521

RESUMO

UNLABELLED: Increasing evidence in recent years has suggested that B cells act as a crucial regulator in autoimmune diseases. However, little is known about their role in autoimmune hepatitis (AIH) and the underlying regulatory mechanisms. In this study, we show that B cells ameliorated experimental AIH (EAH) by suppressing CD4+ T-cell responses and that CD11b expression on B cells was required for the regulatory function of B cells. In vitro studies reveal that the suppressive function of CD11b was mediated by the impairment of T-cell antigen receptor (TCR) signaling transduction and the promotion of TCR down-regulation. Moreover, we show that the increased CD11b expression on B cells was interleukin (IL)-10 dependent and that additional IL-10 stimulation promoted CD11b expression on B cells, thereby enhancing B-cell regulatory effects. CONCLUSION: These findings reveal a previously unrecognized role for CD11b in B-cell regulatory function and its protective effect on EAH.


Assuntos
Linfócitos B/imunologia , Antígeno CD11b/fisiologia , Linfócitos T CD4-Positivos/imunologia , Hepatite Autoimune/imunologia , Animais , Antígenos CD20/imunologia , Antígeno CD11b/análise , Hepatite Autoimune/prevenção & controle , Interferon gama/biossíntese , Interleucina-10/fisiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL
13.
Int Immunol ; 27(10): 531-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25999596

RESUMO

Although classically B cells are known to play important roles in immune protection via humoral immunity, recently their regulatory mechanisms have been best appreciated in the context of autoimmunity. Several studies have identified different subsets of regulatory B cells that vary not only in their phenotype but also in their mechanism of action. Although the best-studied mechanism of B-cell immune regulation is IL-10 production, other IL-10-independent mechanisms have been proposed. These include maintenance of CD4(+)Foxp3(+) regulatory T cells; production of transforming growth factor-ß, IL-35, IgM or adenosine or expression of PD-L1 (programmed death 1 ligand 1) or FasL (Fas ligand). Given that B-cell-targeted therapy is being increasingly used in the clinic, a complete understanding of the mechanisms whereby B cells regulate inflammation associated with specific diseases is required for designing safe and effective immunotherapies targeting B cells.


Assuntos
Linfócitos B Reguladores/imunologia , Linhagem da Célula/imunologia , Encefalomielite Autoimune Experimental/imunologia , Doença Enxerto-Hospedeiro/imunologia , Interleucinas/imunologia , Animais , Linfócitos B Reguladores/patologia , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Proteína Ligante Fas/genética , Proteína Ligante Fas/imunologia , Regulação da Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Humanos , Interleucina-10 , Interleucinas/genética , Camundongos , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
14.
Adv Exp Med Biol ; 909: 69-138, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27240457

RESUMO

Biological response modifiers (BRMs) emerge as a lay of new compounds or approaches used in improving cancer immunotherapy. Evidences highlight that cytokines, Toll-like receptor (TLR) signaling, and noncoding RNAs are of crucial roles in modulating antitumor immune response and cancer-related chronic inflammation, and BRMs based on them have been explored. In particular, besides some cytokines like IFN-α and IL-2, several Toll-like receptor (TLR) agonists like BCG, MPL, and imiquimod are also licensed to be used in patients with several malignancies nowadays, and the first artificial small noncoding RNA (microRNA) mimic, MXR34, has entered phase I clinical study against liver cancer, implying their potential application in cancer therapy. According to amounts of original data, this chapter will review the regulatory roles of TLR signaling, some noncoding RNAs, and several key cytokines in cancer and cancer-related immune response, as well as the clinical cases in cancer therapy based on them.


Assuntos
Aminoquinolinas/uso terapêutico , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/imunologia , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Neoplasias/terapia , Ensaios Clínicos como Assunto , Humanos , Imiquimode , Interferon-alfa/genética , Interferon-alfa/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Mycobacterium bovis/genética , Mycobacterium bovis/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , RNA não Traduzido/genética , RNA não Traduzido/imunologia , RNA não Traduzido/uso terapêutico , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/imunologia , Transdução de Sinais , Receptores Toll-Like/agonistas , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
15.
J Pharmacol Exp Ther ; 349(2): 279-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623801

RESUMO

Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA) as a drug may kill tumor cells and has been used clinically. However, the antitumor immune response of PA-MSHA is not completely understood. In this study, we found that treating Lewis lung carcinoma (3LL)-bearing mice with PA-MSHA plus 3LL antigen led to slower tumor progression and longer survival. After PA-MSHA treatment, T-cell number and dendritic cell maturation were both increased significantly at the tumor site. In addition, PA-MSHA in vitro stimulation resulted in the maturation of bone marrow-derived dendritic cells (BMDCs) from naive mice, showing higher costimulatory molecule expression, more cytokine secretion, lower endocytic activity, and stronger capacity to enhance T-cell activation. Toll-like receptor (TLR)4 but not TLR2 was required in the maturation process. More importantly, PA-MSHA-induced DCs were essential for PA-MSHA to enhance activation, expansion, and interferon (IFN)-γ secretion of TLR4-mediated T cells, which play a role in the antitumor effect of PA-MSHA. Thus, this study reveals PA-MSHA as a novel TLR4 agonist that elicits antitumor immune response to slow tumor progression.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Lewis/imunologia , Células Dendríticas/efeitos dos fármacos , Hemaglutininas/farmacologia , Manose/metabolismo , Pseudomonas aeruginosa/metabolismo , Linfócitos T/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Antineoplásicos/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Hemaglutininas/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Linfócitos T/imunologia , Linfócitos T/patologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética
16.
Beijing Da Xue Xue Bao Yi Xue Ban ; 46(5): 739-43, 2014 Oct 18.
Artigo em Chinês | MEDLINE | ID: mdl-25331397

RESUMO

OBJECTIVE: To propose a calculation method of oligosaccharides' fractal dimension, and to provide a new approach to studying the drug molecular design and activity. METHODS: By using the principle of energy optimization and computer simulation technology, the steady structures of oligosaccharides were found, and an effective way of oligosaccharides fractal dimension's calculation was further established by applying the theory of box dimension to the chemical compounds. RESULTS: By using the proposed method, 22 oligosaccharides' fractal dimensions were calculated, with the mean 1.518 8 ± 0.107 2; in addition, the fractal dimensions of the two activity multivalent oligosaccharides which were confirmed by experiments, An-2 and Gu-4, were about 1.478 8 and 1.516 0 respectively, while C-type lectin-like receptor Dectin-1's fractal dimension was about 1.541 2. The experimental and computational results were expected to help to find a class of glycoside drugs whose target receptor was Dectin-1. CONCLUSION: Fractal dimension, differing from other known macro parameters, is a useful tool to characterize the compound molecules' microscopic structure and function, which may play an important role in the molecular design and biological activity study. In the process of oligosaccharides drug screening, the fractal dimension of receptor and designed oligosaccharides or glycoclusters can be calculated respectively. The oligosaccharides with fractal dimension close to that of target receptor should then take priority compared with others, to get the drug molecules with latent activity.


Assuntos
Simulação por Computador , Fractais , Oligossacarídeos/química , Estrutura Molecular
17.
Cell Mol Immunol ; 21(1): 19-32, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38082147

RESUMO

The metabolic reprogramming underlying the generation of regulatory B cells during infectious diseases remains unknown. Using a Pseudomonas aeruginosa-induced pneumonia model, we reported that IL-10-producing B cells (IL-10+ B cells) play a key role in spontaneously resolving infection-mediated inflammation. Accumulated cytosolic reactive oxygen species (ROS) during inflammation were shown to drive IL-10+ B-cell generation by remodeling one-carbon metabolism. Depletion of the enzyme serine hydroxymethyltransferase 1 (Shmt1) led to inadequate one-carbon metabolism and decreased IL-10+ B-cell production. Furthermore, increased one-carbon flux elevated the levels of the methyl donor S-adenosylmethionine (SAM), altering histone H3 lysine 4 methylation (H3K4me) at the Il10 gene to promote chromatin accessibility and upregulate Il10 expression in B cells. Therefore, the one-carbon metabolism-associated compound ethacrynic acid (EA) was screened and found to potentially treat infectious pneumonia by boosting IL-10+ B-cell generation. Overall, these findings reveal that ROS serve as modulators to resolve inflammation by reprogramming one-carbon metabolism pathways in B cells.


Assuntos
Interleucina-10 , Pneumonia , Humanos , Interleucina-10/metabolismo , Espécies Reativas de Oxigênio , S-Adenosilmetionina/metabolismo , Estresse Oxidativo , Inflamação , Carbono/metabolismo
18.
J Immunol ; 186(4): 1963-9, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21217015

RESUMO

Using TLR agonists in cancer treatment can have either beneficial or detrimental effects. Therefore, it is important to determine their effect on the tumor growth and understand the underlying mechanisms in animal tumor models. In this study, we report a general immunotherapeutic activity of a synthetic bacterial lipoprotein (BLP), a TLR1/TLR2 agonist, on established lung carcinoma, leukemia, and melanoma in mice. Systemic treatment of 3LL tumor-bearing mice with BLP, but not LPS, led to a dose-dependent tumor regression and a long-lasting protective response against tumor rechallenge. The BLP-mediated tumor remission was neither mediated by a direct tumoricidal activity nor by innate immune cells, because it lacked therapeutic effect in immunodeficient SCID mice. Instead, BLP treatment reduced the suppressive function of Foxp3(+) regulatory T cells (Tregs) and enhanced the cytotoxicity of tumor-specific CTL in vitro and in vivo. Furthermore, adoptive cotransfer of BLP-pretreated but not untreated CTL and Tregs from wild-type but not from TLR2(-/-) mice was sufficient to restore antitumor immunity in SCID mice by reciprocally modulating Treg and CTL function. These results demonstrate that the TLR1/TLR2 agonist BLP may have a general tumor therapeutic property involving reciprocal downregulation of Treg and upregulation of CTL function. This property may play an important role in the development of novel antitumor strategies.


Assuntos
Carcinoma Pulmonar de Lewis/prevenção & controle , Leucemia Experimental/prevenção & controle , Melanoma Experimental/prevenção & controle , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Animais , Antineoplásicos/agonistas , Antineoplásicos/síntese química , Proteínas de Bactérias/síntese química , Proteínas de Bactérias/uso terapêutico , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Regulação para Baixo/imunologia , Humanos , Leucemia Experimental/imunologia , Leucemia Experimental/patologia , Lipoproteínas/síntese química , Lipoproteínas/uso terapêutico , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Camundongos SCID , Linfócitos T Citotóxicos/patologia , Linfócitos T Citotóxicos/transplante , Linfócitos T Reguladores/patologia , Linfócitos T Reguladores/transplante , Receptor 1 Toll-Like/fisiologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/fisiologia , Regulação para Cima/imunologia
19.
Am J Respir Crit Care Med ; 186(10): 989-98, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22955313

RESUMO

RATIONALE: Recent study has demonstrated that CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) present in bronchoalveolar lavage fluid (BALF) contribute to the resolution of an experimental acute lung injury (ALI). However, the molecular mechanism underlying the alveolar recruitment of Treg remains unclear. OBJECTIVES: To determine the role of BLT1, a chemotactic receptor for leukotriene B4 (LTB4), in Treg recruitment to BALF of LPS-induced ALI. METHODS: We examined BLT1 expression in mouse and human Tregs and evaluated its role in mediating Treg migration in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: We found that BLT1 expression was strongly up-regulated in Tregs on activation, and that BLT1 mediated the migration of activated, but not resting, Tregs toward LTB4 in vitro. LTB4 levels were persistently elevated in BALF of LPS-induced ALI. Blockade of LTB4-BLT1 pathway by administrating antagonists 1 day after LPS exposure significantly decreased BALF Treg numbers and impaired resolution of ALI characterized by persistent BALF protein, neutrophilic infiltrates, and elevated proinflammatory cytokines. Furthermore, there were significantly less BLT1(-/-) Tregs than wild-type Tregs migrating to BALF of LPS-exposed recipient Rag-1(-/-) mice after adoptive transfer (point estimate 299.73; 95% confidence interval, 255.77-343.69; P < 0.00001), and the impaired alveolar recruitment of BLT1(-/-) Tregs caused the inability to restore the resolution of ALI. CONCLUSIONS: Our findings reveal a novel antiinflammatory role of BLT1 in the resolution of ALI by mediating the alveolar recruitment of Tregs, and indicate that therapies aimed at interrupting the LTB4-BLT1 pathway after ALI onset could be harmful to the resolution of ALI.


Assuntos
Lesão Pulmonar Aguda/imunologia , Alvéolos Pulmonares/imunologia , Receptores do Leucotrieno B4/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Quimiotaxia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Leucotrieno B4/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores do Leucotrieno B4/antagonistas & inibidores , Receptores do Leucotrieno B4/metabolismo , Regulação para Cima
20.
Cell Death Discov ; 9(1): 67, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797242

RESUMO

Interleukin-35 (IL-35)-producing B cells (IL-35+B cells) play an important role in diseases, and the expansion of IL-35+ immune cells have been observed in inflammatory bowel disease (IBD). However, how IL-35+B cells function and the manner in which they perform their roles remain unclear. In this study, human samples and animal models were used to confirm the expansion of IL-35+B cells during IBD. In addition, by using il12a-/- and ebi3-/- mice, we demonstrated that the regulatory role of B cells in IBD depends on IL-35. Mechanically, IL-35+B cells can promote its own expansion through endocrine actions and depend on the transcription factor signal transducer and activator of transcription 3. Interestingly, we found that the diversity of intestinal microbes and expression of microbial metabolites decreased during IBD. IL-35+B cells promote the high expression of indoleacetic acid (IAA), and exogenous metabolite supplementation with IAA can further promote the expansion of IL-35+B cells and rescues the disease. This study provides a new concept for the regulatory model of B cells and a new approach for the treatment of IBD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa