Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nature ; 596(7873): 519-524, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433942

RESUMO

Chemical vapour deposition of carbon-containing precursors on metal substrates is currently the most promising route for the scalable synthesis of large-area, high-quality graphene films1. However, there are usually some imperfections present in the resulting films: grain boundaries, regions with additional layers (adlayers), and wrinkles or folds, all of which can degrade the performance of graphene in various applications2-7. There have been numerous studies on ways to eliminate grain boundaries8,9 and adlayers10-12, but graphene folds have been less investigated. Here we explore the wrinkling/folding process for graphene films grown from an ethylene precursor on single-crystal Cu-Ni(111) foils. We identify a critical growth temperature (1,030 kelvin) above which folds will naturally form during the subsequent cooling process. Specifically, the compressive stress that builds up owing to thermal contraction during cooling is released by the abrupt onset of step bunching in the foil at about 1,030 kelvin, triggering the formation of graphene folds perpendicular to the step edge direction. By restricting the initial growth temperature to between 1,000 kelvin and 1,030 kelvin, we can produce large areas of single-crystal monolayer graphene films that are high-quality and fold-free. The resulting films show highly uniform transport properties: field-effect transistors prepared from these films exhibit average room-temperature carrier mobilities of around (7.0 ± 1.0) × 103 centimetres squared per volt per second for both holes and electrons. The process is also scalable, permitting simultaneous growth of graphene of the same quality on multiple foils stacked in parallel. After electrochemical transfer of the graphene films from the foils, the foils themselves can be reused essentially indefinitely for further graphene growth.

2.
J Biol Chem ; 300(3): 105673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272235

RESUMO

The protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells. CHIP mediated the ubiquitination and degradation of nonphosphorylated eIF2α in a chaperone-independent manner and promoted the upregulation of the cyclic AMP-dependent transcription factor under endoplasmic reticulum stress conditions. Cyclic AMP-dependent transcription factor induced the transcriptional enhancement of the tumor suppressor genes PTEN and RBM5. Although transcription was enhanced, the PTEN protein was subsequently degraded by CHIP, but the expression of the RBM5 protein was upregulated, thereby suppressing the proliferation and migration of A549 cells. Overall, our study established a new mechanism that deepened the understanding of the PERK-eIF2α pathway through the ubiquitination and degradation of eIF2α. The crosstalk between the phosphorylation and ubiquitination of eIF2α shed light on a new perspective for tumor progression.


Assuntos
Fator de Iniciação 2 em Eucariotos , Genes Supressores de Tumor , Ubiquitina-Proteína Ligases , Ubiquitinação , Regulação para Cima , Humanos , Células A549 , Proliferação de Células/genética , AMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Ubiquitinação/genética , Regulação para Cima/genética , Movimento Celular/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602742

RESUMO

Prior investigations have established that the manipulation of neural activity has the potential to influence both rapid eye movement and non-rapid eye movement sleep. Low-intensity retinal ultrasound stimulation has shown effectiveness in the modulation of neural activity. Nevertheless, the specific effects of retinal ultrasound stimulation on rapid eye movement and non-rapid eye movement sleep, as well as its potential to enhance overall sleep quality, remain to be elucidated. Here, we found that: In healthy mice, retinal ultrasound stimulation: (i) reduced total sleep time and non-rapid eye movement sleep ratio; (ii) changed relative power and sample entropy of the delta (0.5-4 Hz) in non-rapid eye movement sleep; and (iii) enhanced relative power of the theta (4-8 Hz) and reduced theta-gamma coupling strength in rapid eye movement sleep. In Alzheimer's disease mice with sleep disturbances, retinal ultrasound stimulation: (i) reduced the total sleep time; (ii) altered the relative power of the gamma band during rapid eye movement sleep; and (iii) enhanced the coupling strength of delta-gamma in non-rapid eye movement sleep and weakened the coupling strength of theta-fast gamma. The results indicate that retinal ultrasound stimulation can modulate rapid eye movement and non-rapid eye movement-related neural activity; however, it is not beneficial to the sleep quality of healthy and Alzheimer's disease mice.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Entropia , Nível de Saúde , Luz , Qualidade do Sono
4.
J Am Chem Soc ; 146(10): 6675-6685, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427024

RESUMO

Peptide stapling is recognized as an effective strategy for improving the proteolytic stability and cell permeability of peptides. In this study, we present a novel approach for the site-selective unsymmetric perfluoroaryl stapling of Ser and Cys residues in unprotected peptides. The stapling reaction proceeds smoothly under very mild conditions, exhibiting a remarkably rapid reaction rate. It can furnish stapled products in both liquid and solid phases, and the presence of nucleophilic groups other than Cys thiol within the peptide does not impede the reaction, resulting in uniformly high yields. Importantly, the chemoselective activation of Ser ß-C(sp3)-H enables the unreacted -OH to serve as a reactive handle for subsequent divergent modification of the staple moiety with various therapeutic functionalities, including a clickable azido group, a polar moiety, a lipid tag, and a fluorescent dye. In our study, we have also developed a visible-light-induced chemoselective C(sp3)-H polyfluoroarylation of the Ser ß-position. This reaction avoids interference with the competitive reaction of Ser -OH, enabling the precise late-stage polyfluoroarylative modification of Ser residues in various unprotected peptides containing other highly reactive amino acid residues. The biological assay suggested that our peptide stapling strategy would potentially enhance the proteolytic stability and cellular permeability of peptides.


Assuntos
Aminoácidos , Peptídeos , Peptídeos/química , Compostos de Sulfidrila/química , Corantes Fluorescentes , Peptídeo Hidrolases
5.
Small ; : e2401132, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552226

RESUMO

Li-rich layered oxides cathodes (LLOs) have prevailed as the promising high-energy-density cathode materials due to their distinctive anionic redox chemistry. However, uncontrollable anionic redox process usually leads to structural deterioration and electrochemical degradation. Herein, a Mo/Cl co-doping strategy is proposed to regulate the relative position of energy band for modulating the anionic redox chemistry and strengthening the structural stability of Co-free Li1.16Mn0.56Ni0.28O2 cathodes. The incorporation of Mo with high d state orbit and Cl with low electronegativity can narrow the band energy gap between bonding and antibonding bands via increasing the filled lower-Hubbard band (LHB) and decreasing the non-bonding O 2p energy bands, promoting the anionic redox reversibility. In addition, strong covalent Mo─O and Mn─Cl bonding further increases the covalency of Mn─O band to further stabilize the O2 n- species and enhance the reversible distortion of MnO6 octahedron. The strengthening electronic conductivity, together with the epitaxial structure Li2MoO4 facilitates the fast Li+ kinetics. As a result, the dual doping material exhibits enhanced anionic redox reversibility and suppressed oxygen release with increased cyclic stability and excellent rate performance. This strategy provides some guidance to design high-energy-density LLOs with desirable anionic redox reversibility and stable crystal structure via band structure engineering.

6.
Cereb Cortex ; 33(24): 11646-11655, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-37874023

RESUMO

Attention deficit hyperactivity disorder is accompanied by changes in cranial nerve function and cerebral blood flow (CBF). Low-intensity ultrasound stimulation can modulate brain neural activity in attention deficit hyperactivity disorder. However, to date, the modulatory effects of low-intensity ultrasound stimulation on CBF and neurovascular coupling in attention deficit hyperactivity disorder have not been reported. To address this question, Sprague-Dawley, Wistar-Kyoto, and spontaneously hypertensive (attention deficit hyperactivity disorder (ADHD) rat model) rats were divided into the control and low-intensity ultrasound stimulation (LIUS) groups. Cortical electrical stimulation was used to induce cortical excitability in different types of rats, and a penetrable laser speckle contrast imaging (LSCI) system and electrodes were used to evaluate the electrical stimulation-induced CBF, cortical excitability, and neurovascular coupling in free-moving rats. The CBF, cortical excitability, and neurovascular coupling (NVC) under cortical electrical stimulation in the attention deficit hyperactivity disorder rats were significantly different from those in the Sprague-Dawley and Wistar-Kyoto rats. We also found that low-intensity ultrasound stimulation significantly interfered with the cortical excitability and neurovascular coupling induced by cortical electrical stimulation in rats with attention deficit hyperactivity disorder. Our findings suggest that neurovascular coupling is a potential biomarker for attention deficit hyperactivity disorder. Furthermore, low-intensity ultrasound stimulation can improve abnormal brain function in attention deficit hyperactivity disorder and lay a research foundation for its application in the clinical treatment of attention deficit hyperactivity disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Acoplamento Neurovascular , Ratos , Animais , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças
7.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731841

RESUMO

Plutella xylostella (Linnaeus) mainly damages cruciferous crops and causes huge economic losses. Presently, chemical pesticides dominate its control, but prolonged use has led to the development of high resistance. In contrast, the sterile insect technique provides a preventive and control method to avoid the development of resistance. We discovered two genes related to the reproduction of Plutella xylostella and investigated the efficacy of combining irradiation with RNA interference for pest management. The results demonstrate that after injecting PxAKT and PxCDK5, there was a significant decrease of 28.06% and 25.64% in egg production, and a decrease of 19.09% and 15.35% in the hatching rate compared to the control. The ratio of eupyrene sperm bundles to apyrene sperm bundles also decreased. PxAKT and PxCDK5 were identified as pivotal genes influencing male reproductive processes. We established a dose-response relationship for irradiation (0-200 Gy and 200-400 Gy) and derived the irradiation dose equivalent to RNA interference targeting PxAKT and PxCDK5. Combining RNA interference with low-dose irradiation achieved a sub-sterile effect on Plutella xylostella, surpassing either irradiation or RNA interference alone. This study enhances our understanding of the genes associated with the reproduction of Plutella xylostella and proposes a novel approach for pest management by combining irradiation and RNA interference.


Assuntos
Quinase 5 Dependente de Ciclina , Mariposas , Proteínas Proto-Oncogênicas c-akt , Interferência de RNA , Animais , Feminino , Masculino , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Fertilidade/efeitos da radiação , Fertilidade/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Reprodução/efeitos da radiação , Reprodução/genética
8.
Angew Chem Int Ed Engl ; 63(11): e202319685, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38151975

RESUMO

Glycerol is a byproduct of biodiesel production. Selective photoelectrochemical oxidation of glycerol to high value-added chemicals offers an economical and sustainable approach to transform renewable feedstock as well as store green energy at the same time. In this work, we synthesized monoclinic WO3 nanosheets with exposed (002) facets, which could selectively oxidize glycerol to glyceric acid (GLYA) with a photocurrent density of 1.7 mA cm-2 , a 73 % GLYA selectivity and a 39 % GLYA Faradaic efficiency at 0.9 V vs. reversible hydrogen electrode (RHE) under AM 1.5G illumination (100 mW cm-2 ). Compared to (200) facets exposed WO3 , a combination of experiments and theoretical calculations indicates that the superior performance of selective glycerol oxidation mainly originates from the better charge separation and prolonged carrier lifetime resulted from the plenty of surface trapping states, lower energy barrier of the glycerol-to-GLYA reaction pathway, more abundant active sites and stronger oxidative ability of photogenerated holes on the (002) facets exposed WO3 . Our findings show great potential to significantly contribute to the sustainable and environmentally friendly chemical processes via designing high performance photoelectrochemical cell via facet engineering for renewable feedstock transformation.

9.
Nat Methods ; 17(2): 163-166, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792434

RESUMO

Optical imaging is important for understanding brain function. However, established methods with high spatiotemporal resolution are limited by the potential for laser damage to living tissues. We describe an adaptive femtosecond excitation source that only illuminates the region of interest, which leads to a 30-fold reduction in the power requirement for two- or three-photon imaging of brain activity in awake mice for improved high-speed longitudinal neuroimaging.


Assuntos
Microscopia/métodos , Fótons , Potenciais de Ação , Animais , Camundongos , Neuroimagem/métodos , Neurônios/fisiologia
10.
Connect Tissue Res ; 64(1): 64-74, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816110

RESUMO

PURPOSE: Simvastatin is a prodrug of the potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. The main purpose of the current study is to assess the accurate function of simvastatin on osteoporosis of extremity bones in aging rats. MATERIALS AND METHODS: Fifty 15-month-old SD rats were divided into five groups (four simvastatin groups and one control group). The rats in four simvastatin groups were fed with different doses of simvastatin (5, 10, 20, and 40 mg/kg/d, respectively) for 3 months, whereas the rats in control group were fed the equal physiological saline. Calcium (Ca), phosphorus (P), and the lipid spectrum in serum were measured. Biochemical markers of bone metabolism, osteocalcin (OC), and tartrate-resistant acid phosphatase (Trap-5b), were analyzed using ELISA. The content of adipocytes in bone marrow was analyzed by histological staining. Finally, the bone quality of the femur and tibia were evaluated using dual-energy X-ray absorptiometry (DEXA), peri-quantity CT (pQCT), and the 3-point bending biomechanical test. RESULTS: Simvastatin reduced serum triglycerides (TG), and 10 mg/kg/d of simvastatin significantly reduced the content of adipocytes in bone marrow compared to the control group. However, statistically significant differences between the simvastatin groups and the control group were not found in the CA, P, OC, Trap-5b, or the evaluation indexes of bone quality from DEXA, pQCT, and biomechanical tests. CONCLUSION: Simvastatin could not prevent osteoporosis of the extremity bones in aging rats.


Assuntos
Osteoporose , Sinvastatina , Ratos , Animais , Sinvastatina/farmacologia , Osteogênese , Ratos Sprague-Dawley , Densidade Óssea , Osteoporose/tratamento farmacológico , Osteocalcina , Extremidade Inferior , Envelhecimento
11.
Photochem Photobiol Sci ; 22(7): 1695-1706, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37022583

RESUMO

Photodynamic inactivation (PDI) has received increasing attention as a promising approach to combat Candida albicans infections. This study aimed to evaluate the synergistic effect of a new BODIPY (4,4-difluoro-boradiazaindacene) derivative and hydrogen peroxide on C. albicans. BDP-4L in combination with H2O2 demonstrated enhanced photokilling efficacy. In suspended cultures of C. albicans, the maximum decrease was 6.20 log and 2.56 log for PDI using BDP-4L (2.5 µM) with or without H2O2, respectively. For mature C. albicans biofilms, 20 µM BDP-4L plus H2O2 eradicated C. albicans, causing an over 6.7 log count reduction in biofilm-associated cells, while only a reduction of ~ 1 log count was observed when H2O2 was omitted. Scanning electron microscopy analysis and LIVE/DEAD assays suggested that PDI using BDP-4L plus H2O2 induced more damage to the cell membrane. Correspondingly, amplification of nucleic acids release was observed in biofilms treated with the combined PDI. Additionally, we also discovered that the addition of hydrogen peroxide potentiated the generation of 1O2 in PDI using the singlet oxygen sensor green probe. Collectively, BDP-4L combined with H2O2 presents a promising approach in the treatment of C. albicans infections.


Assuntos
Candida albicans , Fotoquimioterapia , Peróxido de Hidrogênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Boro/farmacologia , Biofilmes
12.
Inorg Chem ; 62(46): 18809-18813, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37943673

RESUMO

The design of a highly and photomodulated proton conductor is important for advanced potential applications in chemical sensors and bioionic functions. In this work, a metal-organic framework (MOF; Gd-NO2) with high proton conductivity is synthesized with a photosensitive ligand of 5-nitroisophthalic acid (BDC-NO2), and it provides remote-control photomodulated proton-conducting behavior. The proton conduction of Gd-NO2 reaches 3.66 × 10-2 S cm-1 at 98% relative humidity (RH) and 25 °C, while it decreases by ∼400 times after irradiation with a 355 nm laser. The newly generated and disappearing FT-IR characteristic peaks reveal that this photomodulated process is realized by the photoinduced transformation from BDC-NO2 to 5-nitroso-isophthalic acid (BDC-NO). According to density functional theory, the smaller electronegativity of the -NO group, the longer distance of the hydrogen bond between BDC-NO and H2O molecules, and the lower water adsorption energy of BDC-NO indicate that the irradiated sample possesses a poorer hydrophilicity and has difficulty forming rich hydrogen-bonded networks, which results in the remarkable decrease of proton conductivity.

13.
Cereb Cortex ; 32(14): 3057-3067, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35029646

RESUMO

The mouse subventricular zone (SVZ) produces neurons throughout life. It is useful for mechanism discovery and is relevant for regeneration. However, the SVZ is deep, significantly restricting live imaging since current methods do not extend beyond a few hundred microns. We developed and adapted three-photon microscopy (3PM) for non-invasive deep brain imaging in live mice, but its utility in imaging the SVZ niche was unknown. Here, with fluorescent dyes and genetic labeling, we show successful 3PM imaging in the whole SVZ, extending to a maximum depth of 1.5 mm ventral to the dura mater. 3PM imaging distinguished multiple SVZ cell types in postnatal and juvenile mice. We also detected fine processes on neural stem cells interacting with the vasculature. Previous live imaging removed overlying cortical tissue or lowered lenses into the brain, which could cause inflammation and alter neurogenesis. We found that neither astrocytes nor microglia become activated in the SVZ, suggesting 3PM does not induce major damage in the niche. Thus, we show for the first time 3PM imaging of the SVZ in live mice. This strategy could be useful for intravital visualization of cell dynamics, molecular, and pathological perturbation and regenerative events.


Assuntos
Ventrículos Laterais , Células-Tronco Neurais , Animais , Microscopia Intravital , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/metabolismo , Camundongos , Microscopia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia
14.
Appl Microbiol Biotechnol ; 107(17): 5415-5425, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37417973

RESUMO

Fungichromin is a polyene macrolide antibiotic with potent killing activity against a broad range of agricultural pathogens and filamentous fungi and a wide range of potential applications. The production of fungichromin is still hampered by poor fermentation yield and high cost. In this study, the whole genome sequencing of fungichromin-producing Streptomyces sp. WP-1 was conducted, and the fungichromin biosynthetic gene cluster was identified. Comparative analysis revealed that the fungichromin biosynthetic gene cluster contains two regulatory genes, ptnF, and ptnR. The roles of ptnF and ptnR were determined through knockout and complementation. The yield of fungichromin was increased by overexpressing these two regulatory genes, as well as the crotonyl CoA reductase/carboxylase gene ptnB in Streptomyces sp. WP-1. The yield of fungichromin was increased to 8.5 g/L using a combination of genetic engineering and a medium optimization strategy, which is the highest fermentation titer recorded. KEY POINTS: • Confirmation of the positive regulation of ptnF and ptnR on fungichromin. • Improvement of fungichromin production by the construction of ptnF, ptnR, and ptnB overexpression strains. • Improvement of fungichromin production by the addition of soybean oil and copper ions at optimal concentration.


Assuntos
Streptomyces , Streptomyces/genética , Macrolídeos , Engenharia Genética , Polienos , Família Multigênica
15.
Anal Bioanal Chem ; 414(27): 7923-7933, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36136111

RESUMO

The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K+ or Na+. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL-1, and the detection limit of 0.0021 U mL-1 could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.


Assuntos
Técnicas Biossensoriais , Quadruplex G , Bacteriófago T4/metabolismo , Benzotiazóis , DNA/química , DNA Ligases , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Espectrometria de Fluorescência
16.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077364

RESUMO

The main toxic component of endotoxins released from the death or dissolution of Gram-negative bacteria is lipopolysaccharide (LPS), which exists widely in the natural environment, and a large amount of endotoxin can significantly inhibit the reproductive performance of animals. A previous study showed that endotoxins mainly damaged the physiological function of mucins in the endometrium, but the mechanism is not clear. In this study, the PI3K/Akt signaling pathway was not activated, and the NF-κB signaling pathway was inhibited by LPS treatment; the expression of occludin and E-cadherin proteins were decreased and ZO-1 protein expression was increased, because LPS can lead to the mucous layer becoming thinner, so that the embryonic survival rate is significantly reduced in early pregnancy. In middle and late pregnancy, LPS translocated to the epithelial cells of the uterus and the expression of claudin-1, JAMA, and E-cadherin proteins were decreased; at this time, a large number of glycosaminoglycan particles were secreted by endometrial gland cells through the PI3K/Akt/NF-κB signaling pathway that was activated after LPS treatment, However, there was no significant difference between the survival rates of fetal mice in the LPS (+) and LPS (-) groups. Glycosaminoglycan particles and mucins are secreted by gland cells, which can protect and maintain the pregnancy in the middle and late gestational periods.


Assuntos
Lipopolissacarídeos , Fosfatidilinositol 3-Quinases , Animais , Caderinas , Endométrio/metabolismo , Endotoxinas , Feminino , Glicosaminoglicanos , Lipopolissacarídeos/toxicidade , Camundongos , Mucinas , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
Dev Biol ; 458(1): 43-51, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610144

RESUMO

The steroid hormones are instrumental for the growth of mammary epithelial cells. Our previous study indicates that hormones regulate the expression of Rspondin-1 (Rspo1). Yet, the regulatory mechanism remains unknown. In the current study, we identify Amphiregulin (Areg) as a novel upstream regulator of Rspo1 expression mediating the hormonal influence. In response to hormonal signaling, Areg emanating from estrogen receptor (ER)-positive luminal cells, induce the expression of Rspo1 in ER-negative luminal cells. The paracrine action of Areg on Rspo1 expression is dependent on Egfr. Our data reveal a novel Estrogen-Areg-Rspo1 regulatory axis in the mammary gland, providing new evidence for the orchestrated action of systemic hormones and local growth factors.


Assuntos
Anfirregulina/fisiologia , Estradiol/fisiologia , Ciclo Estral/fisiologia , Regulação da Expressão Gênica/fisiologia , Glândulas Mamárias Animais/metabolismo , Progesterona/fisiologia , Trombospondinas/biossíntese , Anfirregulina/genética , Animais , Células Cultivadas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/fisiologia , Cloridrato de Erlotinib/farmacologia , Estradiol/farmacologia , Ciclo Estral/genética , Feminino , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Cultura Primária de Células , Progesterona/farmacologia , RNA Interferente Pequeno/genética , Trombospondinas/genética , Transcriptoma
18.
BMC Gastroenterol ; 21(1): 49, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33530944

RESUMO

BACKGROUND: Aortoenteric fistula (AEF) is a rare cause of gastrointestinal bleeding and is often misdiagnosed in clinical practice. Herein, a case series of AEFs are presented and the clinical characteristics, diagnosis, and management strategies are summarized. METHODS: A retrospective analysis was performed on consecutive hospitalized patients with a final diagnosis of AEF at Beijing Friendship Hospital, Capital Medical University, between January 1, 2007 and March 31, 2020. The clinical data including diagnostic and management procedures as well as outcomes were collected and summarized. RESULTS: A total of nine patients were included in this study, five with primary AEF and four with secondary AEF. Eight of the patients were male, and the median age was 63 years. The fistulas were located in both the small intestine and the colon. All patients presented with gastrointestinal bleeding and pain, followed by weight loss, anorexia, and fever. A typical abdominal triad was found in only two cases. Seven patients experienced complications with preoperative abdominal infections and sepsis, and multiple organ failure occurred in four of these patients. All patients were assessed by computed tomography and five underwent abdominal and/or iliac aorta angiography. Two of these patients showed contrast agent leakage from the abdominal aorta into the intestine. Two cases were diagnosed with AEF by endoscopy before the operation. Eight patients received surgery and six patients survived. CONCLUSIONS: AEF is a rare cause of gastrointestinal bleeding that is associated with high mortality. Gastrointestinal bleeding and pain are the most common presentations. Timely diagnosis and multidisciplinary management are crucial to achieve a positive outcome.


Assuntos
Doenças da Aorta , Fístula Intestinal , Angiografia , Doenças da Aorta/complicações , Doenças da Aorta/diagnóstico por imagem , Feminino , Hemorragia Gastrointestinal/etiologia , Humanos , Fístula Intestinal/complicações , Fístula Intestinal/cirurgia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
19.
Bioorg Med Chem ; 46: 116344, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34438337

RESUMO

Based on a new pyrazole sulfonate synthetic method, a novel class of molecules with a basic structure of pyrazole N-aryl sulfonate have been designed and synthesized. The interest in conducting intensive research stems from quite evident anti-inflammatory effects exhibited by the compounds in preliminary animal experiments. A series of compounds were synthesized by different substitutions of the R1, R2, and R3 groups. Within the series, 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and phenyl 5-methyl-3-(4-(trifluoromethyl) phenyl)-1H-pyrazole-1-sulfonate exhibited excellent anti-inflammatory activity (% inhibition of auricular edemas = 27.0 and 35.9, respectively); the in vivo analgesic activity of phenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate was confirmed to be effective (inhibition ratio of writhing = 50.7% and 48.5% separately), and compounds phenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate , 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate were identified as selective COX-2 inhibitors (SI = 455, 10,497 and >189 severally). In Acute Oral Toxicity assays conducted in vivo, the lethal dose 50 (LD50) of 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate to mice was >2000 mg/kg BW.


Assuntos
Sulfonatos de Arila/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Descoberta de Drogas , Animais , Sulfonatos de Arila/síntese química , Sulfonatos de Arila/química , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Células RAW 264.7 , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
20.
Nat Methods ; 14(4): 388-390, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28218900

RESUMO

High-resolution optical imaging is critical to understanding brain function. We demonstrate that three-photon microscopy at 1,300-nm excitation enables functional imaging of GCaMP6s-labeled neurons beyond the depth limit of two-photon microscopy. We record spontaneous activity from up to 150 neurons in the hippocampal stratum pyramidale at ∼1-mm depth within an intact mouse brain. Our method creates opportunities for noninvasive recording of neuronal activity with high spatial and temporal resolution deep within scattering brain tissues.


Assuntos
Encéfalo/citologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/fisiologia , Animais , Encéfalo/fisiologia , Calmodulina/análise , Calmodulina/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa