Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Allergy Clin Immunol ; 152(1): 182-194.e7, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36758835

RESUMO

BACKGROUND: Inborn errors of immunity have been implicated in causing immune dysregulation, including allergic diseases. STAT6 is a key regulator of allergic responses. OBJECTIVES: This study sought to characterize a novel gain-of-function STAT6 mutation identified in a child with severe allergic manifestations. METHODS: Whole-exome and targeted gene sequencing, lymphocyte characterization, and molecular and functional analyses of mutated STAT6 were performed. RESULTS: This study reports a child with a missense mutation in the DNA binding domain of STAT6 (c.1114G>A, p.E372K) who presented with severe atopic dermatitis, eosinophilia, and elevated IgE. Naive lymphocytes from the affected patient displayed increased TH2- and suppressed TH1- and TH17-cell responses. The mutation augmented both basal and cytokine-induced STAT6 phosphorylation without affecting dephosphorylation kinetics. Treatment with the Janus kinase 1/2 inhibitor ruxolitinib reversed STAT6 hyperresponsiveness to IL-4, normalized TH1 and TH17 cells, suppressed the eosinophilia, and improved the patient's atopic dermatitis. CONCLUSIONS: This study identified a novel inborn error of immunity due to a STAT6 gain-of-function mutation that gave rise to severe allergic dysregulation. Janus kinase inhibitor therapy could represent an effective targeted treatment for this disorder.


Assuntos
Dermatite Atópica , Eosinofilia , Hipersensibilidade , Criança , Humanos , Fatores de Transcrição/genética , Mutação com Ganho de Função , Dermatite Atópica/genética , Hipersensibilidade/genética , Eosinofilia/genética , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Células Th2
2.
Mol Psychiatry ; 27(4): 2095-2105, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115700

RESUMO

The ability to remember conspecifics is critical for adaptive cognitive functioning and social communication, and impairments of this ability are hallmarks of autism spectrum disorders (ASDs). Although hippocampal ventral CA1 (vCA1) neurons are known to store social memories, how their activities are coordinated remains unclear. Here we show that vCA1 social memory neurons, characterized by enhanced activity in response to memorized individuals, were preferentially reactivated during sharp-wave ripples (SPW-Rs). Spike sequences of these social replays reflected the temporal orders of neuronal activities within theta cycles during social experiences. In ASD model Shank3 knockout mice, the proportion of social memory neurons was reduced, and neuronal ensemble spike sequences during SPW-Rs were disrupted, which correlated with impaired discriminatory social behavior. These results suggest that SPW-R-mediated sequential reactivation of neuronal ensembles is a canonical mechanism for coordinating hippocampus-dependent social memories and its disruption underlie the pathophysiology of social memory defects associated with ASD.


Assuntos
Transtorno Autístico , Amnésia , Animais , Hipocampo/fisiologia , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Neurônios/fisiologia
3.
Small ; 18(40): e2203432, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36069247

RESUMO

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common respiratory critical syndrome that currently has no effective therapeutic interventions. Pulmonary macrophages play a principal role in the initiation and progression of the overwhelming inflammation in ALI/ARDS. Here, a type of fluorous-tagged bioactive peptide nanoparticle termed CFF13F is developed, which can be efficiently internalized by macrophages and suppress the excessive expression of cytokines and the overproduction of reactive oxygen species (ROS) triggered by lipopolysaccharide (LPS). The cytoprotective effect of CFF13F may be attributed to the lysosomal-stabilization property and regulation of the antioxidative system. Moreover, intratracheal pretreatment with CFF13F can effectively reduce local and systematic inflammation, and ameliorate pulmonary damage in an LPS-induced ALI murine model. The therapeutic efficacy of CFF13F is affected by the administration routes, and the local intratracheal injection is found to be the optimal choice for ALI treatment, with preferred biodistribution profiles. The present study provides solid evidence of the potent immunomodulatory bioactivity of the fluorous-tagged peptide nanoparticles CFF13F in vitro and in vivo, and sheds light on the development of novel efficient nanodrugs for ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Nanopartículas , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão , Lisossomos/metabolismo , Macrófagos Alveolares , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual
4.
Cytometry A ; 101(12): 1000-1005, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35593538

RESUMO

Regulatory T (Treg) cells are a specialized subpopulation of CD4+ T cells that enforce peripheral immune tolerance. Treg cells act to suppress exuberant immune responses, limit inflammation, and promote tissue repair, thereby maintaining homeostasis and tolerance to self-antigens and those of the commensal microbial flora. Treg cells are characterized by the expression of the master regulator Foxp3, which plays a major role in Treg cells development and function. Under inflammatory conditions, Foxp3+ Treg cells may acquire effector T cell programs that modify their phenotype and function, reflecting their plasticity. During microbial infections, Treg cells act to limit the immunopathology triggered by the host immune response to pathogens albeit at the potential risk of pathogen persistence. In this review, we will discuss the influence of Treg cells on the outcome of viral infection and will give an overview of the Treg phenotype at steady-state and in inflammatory conditions.


Assuntos
Linfócitos T Reguladores , Viroses , Camundongos , Animais , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Tolerância Imunológica , Diferenciação Celular , Viroses/metabolismo
5.
Cytometry A ; 101(12): 1006-1011, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165514

RESUMO

Peripheral immunological tolerance is mainly maintained by regulatory T (Treg) cells, a specific CD4 T cells subset that expresses the transcription factor Foxp3. Treg cells are crucial to control autoimmunity and inflammation and to limit tissue destruction arising from inflammatory responses. Loss of functions mutations in FOXP3 in humans induces a fatal autoimmune lymphoproliferative disorder, known as Immune dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX). Specific Treg cell differentiation and activation states have been linked to several human diseases. Indeed, Treg cells play a crucial role in different diseases including colitis, multiple sclerosis, autoimmunity, and infection. Characterization of Treg cell functions and understanding the role of different Treg cell subsets are crucial to the development of novel Treg cell-specific therapeutics for inflammatory diseases. In this phenotype report, we will describe laboratory methods to effectively study and characterize human Treg cells.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Linfócitos T Reguladores , Humanos , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Subpopulações de Linfócitos T , Mutação
6.
Allergy ; 77(11): 3377-3387, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35841382

RESUMO

BACKGROUND: The mechanisms by which genetic and environmental factors interact to promote asthma remain unclear. Both the IL-4 receptor alpha chain R576 (IL-4RαR576) variant and Notch4 license asthmatic lung inflammation by allergens and ambient pollutant particles by subverting lung regulatory T (Treg ) cells in an IL-6-dependent manner. OBJECTIVE: We examined the interaction between IL-4RαR576 and Notch4 in promoting asthmatic inflammation. METHODS: Peripheral blood mononuclear cells (PBMCs) of asthmatics were analyzed for T helper type 2 cytokine production and Notch4 expression on Treg cells as a function of IL4RR576 allele. The capacity of IL-4RαR576 to upregulate Notch4 expression on Treg cells to promote severe allergic airway inflammation was further analyzed in genetic mouse models. RESULTS: Asthmatics carrying the IL4RR576 allele had increased Notch4 expression on their circulating Treg cells as a function of disease severity and serum IL-6. Mice harboring the Il4raR576 allele exhibited increased Notch4-dependent allergic airway inflammation that was inhibited upon Treg cell-specific Notch4 deletion or treatment with an anti-Notch4 antibody. Signaling via IL-4RαR576 upregulated the expression in lung Treg cells of Notch4 and its downstream mediators Yap1 and beta-catenin, leading to exacerbated lung inflammation. This upregulation was dependent on growth factor receptor-bound protein 2 (GRB2) and IL-6 receptor. CONCLUSION: These results identify an IL-4RαR576-regulated GRB2-IL-6-Notch4 circuit that promotes asthma severity by subverting lung Treg cell function.


Assuntos
Asma , Pneumonia , Animais , Camundongos , Asma/genética , Modelos Animais de Doenças , Inflamação , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Pulmão , Camundongos Endogâmicos BALB C , Pneumonia/metabolismo , Receptores de Interleucina-4/metabolismo , Linfócitos T Reguladores
7.
J Clin Psychol ; 78(7): 1436-1450, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34993980

RESUMO

BACKGROUND: The purpose of this study was to explore the core and driving symptoms of posttraumatic stress disorder (PTSD) of firefighters before and after rescue. Identifying core symptoms of PTSD can help clinicians to understand what may be relevant targets for treatment. METHODS: The study recruited 334 firefighters in a firefighter military school in September 2017 (T1). They were followed up 3 months later (T2), during which time they participated in real rescue activities. The network structure of DSM-5 PTSD was using regularized partial correlation models and a Bayesian approach computing directed acyclic graphs. RESULTS: The most central symptom both in T1 and T2 was negative emotional state. Irritable or anger emerged as a key driver of other symptoms in traumatized firefighters. CONCLUSIONS: Negative emotional state and irritable or anger might represent important symptoms within PTSD symptomatology and may offer key targets in PTSD treatment for firefighters.


Assuntos
Bombeiros , Transtornos de Estresse Pós-Traumáticos , Teorema de Bayes , China , Manual Diagnóstico e Estatístico de Transtornos Mentais , Humanos , Transtornos de Estresse Pós-Traumáticos/psicologia , Transtornos de Estresse Pós-Traumáticos/terapia
8.
Dev Growth Differ ; 62(9): 507-515, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33112441

RESUMO

To be social, the ability to recognize and discriminate conspecific individuals is indispensable in social animals, including primates, rodents, birds, fish, and social insects which live in societies or groups. Recent studies using molecular biology, genetics, in vivo and in vitro physiology, and behavioral neuroscientific approaches have provided detailed insights into how animals process and recognize the information of individuals. Here, we review the most distinct sensory modalities for individual recognition in animals, namely, olfaction and vision. In the case of rodents, two polymorphic gene complexes have been identified in their urine as the key and essential pheromonal components for individual recognition: the major histocompatibility complex (MHC) and the major urinary protein (MUP). Animals flexibly utilize MHC and/or MUP, which are detected by the main olfactory epithelium (MOE) and/or the vomeronasal organ (VNO) for various types of social recognition, such as strain recognition, kin recognition, and individual recognition. In contrast, primates, including humans, primarily use facial appearance to identify others. Face recognition in humans and other animals is naturally unique from genetic, cognitive, developmental, and functional points of view. Importantly note that nurture effects during growth phase such as social experience and environment can also shape and tune this special cognitive ability, in order to distinguish subtle differences between individuals. In this review, we address such unique nature and nurture mechanisms for individual recognition.


Assuntos
Olfato , Visão Ocular , Animais , Complexo Principal de Histocompatibilidade , Proteínas/metabolismo , Órgão Vomeronasal/metabolismo
9.
Int J Med Sci ; 17(6): 807-814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218702

RESUMO

Family with sequence similarity 83A (FAM83A) is a newly-found over-expressed oncogene in several types of cancers and associates with poor prognosis. However, the role that FAM83A may play in the carcinogenesis of non-small cell lung cancer (NSCLC) still needs to be defined. The present study aimed to investigate the function of FAM83A in NSCLC progression and to investigate the possible mechanism. Analysis of Gene Expression Omnibus (GEO) database and rt-PCR showed up-regulated expression of FAM83A in NSCLC. GEO and the Cancer Genome Atlas (TCGA) data analysis revealed that high expression level of FAM83A in NSCLC was associated with poor prognosis. In vitro experiments showed that depleting FAM83A by siRNA/shRNA significantly inhibited cell proliferation and induced cell apoptosis. Cell motility was also retarded after silencing FAM83A, as demonstrated by Transwell assay. FAM83A depletion in A549 cells also inhibited subcutaneous tumor growth and lung metastasis in vivo. Western blotting showed that silencing FAM83A decreased the phosphorylation of ERK and PI3K/Akt/mTOR. On the other hand, overexpressing FAM83A in vitro enhanced cell proliferation and invasiveness, which was repressed by PI3K inhibitor and ERK inhibitor separately. Taken together, our study suggests that FAM83A promotes tumorigenesis of NSCLC at least partly via ERK and PI3K/Akt/mTOR pathways, making it a promising therapeutic target.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Proteínas de Neoplasias/genética , Células A549 , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/genética , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética
10.
Respir Res ; 19(1): 230, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466433

RESUMO

BACKGROUND: Mitochondrial damage leading to oxidant stress may play an important role in the pathogenesis of airflow obstruction and emphysema. NLPR3 inflammasome can be activated by mitochondrial ROS (mtROS) and other stimuli. We examined the importance of mtROS and NLRP3 inflammasome and their interactions in multiple ozone-induced lung inflammation and emphysema. METHODS: C57/BL6 mice were exposed to ozone (2.5 ppm, 3 h) or filtered air twice a week over 6 weeks. MitoTEMPO (20 mg/kg), an inhibitor of mtROS, and VX765 (100 mg/kg), an inhibitor of caspase-1 activity, were administered by intraperitoneal or intragastric injection respectively 1 h prior to each ozone exposure for 6 weeks. RESULTS: Ozone-exposed mice had increased bronchoalveolar lavage (BAL) total cells and levels of IL-1ß, KC and IL-6, augmented lung tissue inflammation scores, enhanced oxidative stress with higher serum 8-OHdG concentrations, emphysema with greater mean linear intercept (Lm), airway remodeling with increased airway smooth muscle mass and airflow limitation as indicated by a reduction in the ratio of forced expiratory volume at 25 and 50 milliseconds to forced vital capacity (FEV25/FVC, FEV50/FVC). Both MitoTEMPO and VX765 reduced lung inflammation scores, cytokine levels, oxidative stress and increased mitochondrial fission proteins. VX765 also attenuated emphysema, airway remodeling and airflow limitation. MitoTEMPO inhibited the increased expression of mitochondrial complex II and IV and of NLPR3 while VX765 inhibited the expression and activity of NLRP3 and caspase-1 pathway in the lung. CONCLUSIONS: Both mtROS and NLRP3 inflammasome play a role in ozone-induced lung inflammation while only NLRP3 is involved in ozone-induced emphysema.


Assuntos
Enfisema/metabolismo , Mitocôndrias/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ozônio/toxicidade , Pneumonia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Enfisema/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ozônio/administração & dosagem , Pneumonia/induzido quimicamente
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 99-108, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37368029

RESUMO

Acute respiratory distress syndrome (ARDS) is a devastating respiratory disorder, characterized by overwhelming inflammation in the alveoli without effective pharmacological treatment. We aimed to investigate the effect and mechanism of angiotensin II type 2 receptor (AT2R) agonist, Compound 21 (C21), on the lipopolysaccharide (LPS)-induced acute lung injury (ALI) model. The protective effect of C21 was evaluated via enzyme-linked immunosorbent assay (ELISA), Western blot (WB), real-time PCR, and fluorescence microscopy in LPS-challenged THP1-derived macrophages. Besides, the in vivo efficacy of C21 was assessed using cell counting, ELISA, protein quantification, hematoxylin-eosin (H&E) staining, and WB in an LPS-induced ALI mouse model. The results showed that C21 significantly inhibited the secretion of pro-inflammatory cytokines (CCL-2, IL-6), overproduction of intracellular ROS, and activation of inflammatory pathways (NF-κB/NLRP3, p38/MAPK) in THP-1 cell-derived macrophages stimulated by LPS. In in vivo study, intraperitoneal injection of C21 could reduce airway leukocytes accumulation and chemokine/cytokine (keratinocyte chemoattractant (KC), IL-6) generation, as well as alleviate diffuse alveolar damage induced by LPS. Conclusively, the AT2R agonist C21 significantly inhibited LPS-stimulated excess inflammatory responses and oxidative stress in macrophages. Meanwhile, C21 could effectively alleviate acute inflammation and tissue damage in the lungs of ALI mice challenged by LPS. The results of this study bring new hope for the early treatment of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Receptor Tipo 2 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/uso terapêutico , Interleucina-6/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Citocinas/metabolismo , Pulmão/metabolismo , Macrófagos , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico
12.
Nat Commun ; 15(1): 4531, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866749

RESUMO

Individuals with autism spectrum disorder (ASD) have a higher prevalence of social memory impairment. A series of our previous studies revealed that hippocampal ventral CA1 (vCA1) neurons possess social memory engram and that the neurophysiological representation of social memory in the vCA1 neurons is disrupted in ASD-associated Shank3 knockout mice. However, whether the dysfunction of Shank3 in vCA1 causes the social memory impairment observed in ASD remains unclear. In this study, we found that vCA1-specific Shank3 conditional knockout (cKO) by the adeno-associated virus (AAV)- or specialized extracellular vesicle (EV)- mediated in vivo gene editing was sufficient to recapitulate the social memory impairment in male mice. Furthermore, the utilization of EV-mediated Shank3-cKO allowed us to quantitatively examine the role of Shank3 in social memory. Our results suggested that there is a certain threshold for the proportion of Shank3-cKO neurons required for social memory disruption. Thus, our study provides insight into the population coding of social memory in vCA1, as well as the pathological mechanisms underlying social memory impairment in ASD.


Assuntos
Transtorno do Espectro Autista , Região CA1 Hipocampal , Edição de Genes , Memória , Camundongos Knockout , Proteínas do Tecido Nervoso , Comportamento Social , Animais , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Região CA1 Hipocampal/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Camundongos , Memória/fisiologia , Neurônios/metabolismo , Dependovirus/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL
13.
Food Chem ; 421: 136132, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37094396

RESUMO

Bixin has desirable bioactivities but poor water solubility, which limits its practical applications. Enzymatic transesterification of methyl to alditol groups in bixin by Candida antarctica lipase B (CALB) improves bixin water solubility. Herein, magnetic CALB nanoreactors with diameter of 11.7 nm and CALB layer thickness of 3.5 nm were developed by covalently linking CALB onto silicon covered Fe3O4 nanoparticles. The CALB loading capacity in nanoreactors achieved 30%. The Michaelis constant (Km) and maximum reaction rate of magnetic CALB nanoreactors were 56.1 mmol/L and 0.2 mmol/(L·min). Magnetic CALB nanoreactors could circularly catalyze bixin-maltitol ester synthesis and keep catalytic efficiency of 62.6% after eight repetitive enzymatic reactions. Additionally, the optimal bixin-maltitol ester synthesis procedure was heating bixin-maltitol mixture at molar ratio of 1:7 in anhydrous 2-methyl-2-butanol-dimethylsulfoxide (8:2, v/v) at 50 °C for 24 h. Bixin-maltitol ester showed improved water solubility at pH 5.5 and 7.0.


Assuntos
Enzimas Imobilizadas , Ésteres , Candida , Proteínas Fúngicas , Álcoois Açúcares , Nanotecnologia , Fenômenos Magnéticos , Água
14.
Nat Commun ; 14(1): 3458, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400435

RESUMO

Perception of fear induced by others in danger elicits complex vicarious fear responses and behavioral outputs. In rodents, observing a conspecific receive aversive stimuli leads to escape and freezing behavior. It remains unclear how these behavioral self-states in response to others in fear are neurophysiologically represented. Here, we assess such representations in the ventromedial prefrontal cortex (vmPFC), an essential site for empathy, in an observational fear (OF) paradigm in male mice. We classify the observer mouse's stereotypic behaviors during OF using a machine-learning approach. Optogenetic inhibition of the vmPFC specifically disrupts OF-induced escape behavior. In vivo Ca2+ imaging reveals that vmPFC neural populations represent intermingled information of other- and self-states. Distinct subpopulations are activated and suppressed by others' fear responses, simultaneously representing self-freezing states. This mixed selectivity requires inputs from the anterior cingulate cortex and the basolateral amygdala to regulate OF-induced escape behavior.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Medo , Camundongos , Masculino , Animais , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Empatia , Neurônios/fisiologia
15.
Free Radic Biol Med ; 202: 2-16, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965538

RESUMO

Acute lung injury (ALI) or its severe form, acute respiratory distress syndrome (ARDS) is a life-threatening illness without effective therapeutic interventions currently. Multiple lines of evidence indicated that overwhelming inflammatory responses and impaired epithelial barrier contributed to the pathogenesis of ALI/ARDS. Recently, dopamine (DA) system was identified to participate in various pulmonary diseases. Here, we discovered that dopamine D1-like receptors mainly expressed in macrophages and airway epithelial cells (AECs), which were downregulated by lipopolysaccharide (LPS) challenge in ALI mouse lung. SKF38393 (SKF) is a selective agonist for D1-like receptors and was demonstrated to inhibit excessive inflammatory responses and oxidative stress in THP-1 cell-derived macrophages and Beas-2B cells, as well as improve airway epithelial barrier dysfunction induced by LPS stimulation. Moreover, SKF administration could effectively decrease pulmonary inflammation, ameliorate tissue damage in the LPS-triggered ALI mice. The broad protective actions of SKF might be attributed to the activation of Nrf2 antioxidative system by use of the specific inhibitor, ML385. This study offers evidence of potent immunoregulatory activity of SKF in macrophages, AECs as well as ALI mouse model, which opens novel therapeutic avenues for the intervention of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Agonistas de Dopamina/efeitos adversos , Dopamina , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Macrófagos , Células Epiteliais/patologia , Síndrome do Desconforto Respiratório/patologia , Receptores de Dopamina D1 , Pulmão
16.
Heliyon ; 9(10): e20797, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867902

RESUMO

Asthma is a common disease that seriously threatens public health. With significant developments in bronchoscopy, different interventional pulmonology techniques for refractory asthma treatment have been developed. These technologies achieve therapeutic purposes by targeting diverse aspects of asthma pathophysiology. However, even though these newer techniques have shown appreciable clinical effects, their differences in mechanisms and mutual commonalities still deserve to be carefully explored. Therefore, in this review, we summarized the potential mechanisms of bronchial thermoplasty, targeted lung denervation, and cryoablation, and analyzed the relationship between these different methods. Based on available evidence, we speculated that the main pathway of chronic airway inflammation and other pathophysiologic processes in asthma is sensory nerve-related neurotransmitter release that forms a "neuro-immunity crosstalk" and amplifies airway neurogenic inflammation. The mechanism of completely blocking neuro-immunity crosstalk through dual-ablation of both efferent and afferent fibers may have a leading role in the clinical efficacy of interventional pulmonology in the treatment of asthma and deserves further investigation.

17.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36282598

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcomes were previously correlated with Notch4 expression on Tregs, here, we show that Tregs in MIS-C were destabilized through a Notch1-dependent mechanism. Genetic analysis revealed that patients with MIS-C had enrichment of rare deleterious variants affecting inflammation and autoimmunity pathways, including dominant-negative mutations in the Notch1 regulators NUMB and NUMBL leading to Notch1 upregulation. Notch1 signaling in Tregs induced CD22, leading to their destabilization in a mTORC1-dependent manner and to the promotion of systemic inflammation. These results identify a Notch1/CD22 signaling axis that disrupts Treg function in MIS-C and point to distinct immune checkpoints controlled by individual Treg Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Criança , COVID-19/genética , Linfócitos T Reguladores , Inflamação/genética , Receptor Notch1/genética , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
18.
Nat Commun ; 13(1): 7703, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513690

RESUMO

Acute respiratory distress syndrome (ARDS) is a common respiratory critical syndrome with no effective therapeutic intervention. Neutrophils function in the overwhelming inflammatory process of acute lung injury (ALI) caused by ARDS; however, the phenotypic heterogeneity of pulmonary neutrophils in ALI/ARDS remains largely unknown. Here, using single-cell RNA sequencing, we identify two transcriptionally and functionally heterogeneous neutrophil populations (Fth1hi Neu and Prok2hi Neu) with distinct locations in LPS-induced ALI mouse lungs. Exposure to LPS promotes the Fth1hi Neu subtype, with more inflammatory factors, stronger antioxidant, and decreased apoptosis under the regulation of interleukin-10. Furthermore, prolonged retention of Fth1hi Neu within lung tissue aggravates inflammatory injury throughout the development of ALI/ARDS. Notably, ARDS patients have high ratios of Fth1 to Prok2 expression in pulmonary neutrophils, suggesting that the Fth1hi Neu population may promote the pathological development and provide a marker of poor outcome.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Camundongos , Animais , Neutrófilos/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/patologia , Inflamação/metabolismo , Síndrome do Desconforto Respiratório/patologia , Pulmão/patologia
19.
Front Pharmacol ; 13: 930593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386221

RESUMO

Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.

20.
Res Sq ; 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35441180

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcome were previously correlated with Notch4 expression on regulatory T (Treg) cells, here we show that the Treg cells in MIS-C are destabilized in association with increased Notch1 expression. Genetic analysis revealed that MIS-C patients were enriched in rare deleterious variant impacting inflammation and autoimmunity pathways, including dominant negative mutations in the Notch1 regulators NUMB and NUMBL. Notch1 signaling in Treg cells induced CD22, leading to their destabilization in an mTORC1 dependent manner and to the promotion of systemic inflammation. These results establish a Notch1-CD22 signaling axis that disrupts Treg cell function in MIS-C and point to distinct immune checkpoints controlled by individual Treg cell Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa