Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446716

RESUMO

Sensitive detection of nitrogen dioxide (NO2) is of significance in many areas for health and environmental protections. In this work, we developed an efficient NO2 sensor that can respond within seconds at room temperature, and the limit of detection (LOD) is as low as 100 ppb. Coating cyano-substituted poly(p-phenylene vinylene) (CN-PPV) films on graphene (G) layers can dope G sheets effectively to a heavy n state. The influences of solution concentrations and annealing temperatures on the n-doping effect were investigated in detail. The CN-PPV-G transistors fabricated with the optimized parameters demonstrate active sensing abilities toward NO2. The n-doping state of CN-PPV-G is reduced dramatically by NO2, which is a strong p-doping compound. Upon exposure to 25 ppm of NO2, our CN-PPV-G sensors react in 10 s, indicating it is almost an immediate response. LOD is determined as low as 100 ppb. The ultrahigh responding speed and low LOD are not affected in dry air. Furthermore, cycling use of our sensors can be realized through simple annealing. The superior features shown by our CN-PPV-G sensors are highly desired in the applications of monitoring the level of NO2 in situ and setting immediate alarms. Our results also suggest that transfer curves of transistors can react very promptly to the stimulus of target gas and, thus, are very promising in the development of fast-response sensing devices although the response values may not reach maximum as a tradeoff.


Assuntos
Grafite , Dióxido de Nitrogênio , Limite de Detecção , Temperatura
2.
Biochim Biophys Acta Bioenerg ; 1858(4): 325-335, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188780

RESUMO

The cold adaptation mechanism of phycobiliproteins, the major photosynthetic pigment-proteins in cyanobacteria and red algae, has rarely been studied. Here we reported the biochemical, structural, and molecular dynamics simulation study of the C-phycocyanin from Arctic cyanobacterial strain Pseudanabaena sp. LW0831. We characterized the phycobilisome components of LW0831 and obtained their gene sequences. Compared to the mesophilic counterpart from Arthrospira platensis (Ar-C-PC), LW0831 C-phycocyanin (Ps-C-PC) has a decreased thermostability (∆Tm of -16°C), one of the typical features of cold-adapted enzymes. To uncover its structural basis, we resolved the crystal structure of Ps-C-PC 1 at 2.04Å. Consistent with the decrease in thermostability, comparative structural analyses revealed decreased intra-trimer and inter-trimer interactions in Ps-C-PC 1, compared to Ar-C-PC. However, comparative molecular dynamics simulations indicated that Ps-C-PC 1 shows similar flexibilities to Ar-C-PC for both the (αß)3 trimer and (αß)6 hexamer. Therefore, the optimization mode is clearly different from cold-adapted enzymes, which usually have increased flexibilities. Detailed analyses demonstrated different optimization modes for the α and ß subunits and it was revealed that hydrophobic interactions are key to this difference, though salt bridges, hydrogen bonds, and surface hydrophobicity are also involved. This study is the first report of the structure of cold-adapted phycobiliproteins and provides insights into the cold-adaptation strategies of non-enzyme proteins.


Assuntos
Cianobactérias/química , Fotossíntese , Ficobiliproteínas/química , Ficocianina/química , Proteína C/química , Temperatura Baixa , Cristalização , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estabilidade Proteica
3.
Sci Rep ; 7(1): 8542, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819147

RESUMO

Nitrogen is one of the most important nutrients needed for plants and algae to survive, and the photosynthetic ability of algae is related to nitrogen abundance. Red algae are unique photosynthetic eukaryotic organisms in the evolution of algae, as they contain phycobilisomes (PBSs) on their thylakoid membranes. In this report, the in vivo chlorophyll (Chl) a fluorescence kinetics of nitrogen-starved Porphyridium cruentum were analyzed to determine the effects of nitrogen deficiency on photosynthetic performance using a multi-color pulse amplitude modulation (PAM) chlorophyll fluorometer. Due to nitrogen starvation, the photochemical efficiency of PSII and the activity of PSII reaction centers (RCs) decreased, and photoinhibition of PSII occurred. The water-splitting system on the donor side of PSII was seriously impacted by nitrogen deficiency, leading to the inactivation of the oxygen-evolving complex (OEC) and decreased light energy conversion efficiency. In nitrogen-starved cells, a higher proportion of energy was used for photochemical reactions, and thermal dissipation was reduced, as shown by qP and qN. The ability of nitrogen-starved cells to tolerate and resist high photon flux densities was weakened. Our results showed that the photosynthetic performance of P. cruentum was severely impacted by nitrogen deficiency.


Assuntos
Proteínas de Algas/metabolismo , Clorofila A/metabolismo , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Porphyridium/metabolismo , Clorofila A/química , Fluorescência , Fluorometria/métodos , Luz , Oxigênio/metabolismo , Processos Fotoquímicos/efeitos da radiação , Fotossíntese/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa