Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Environ Res ; 255: 119125, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740293

RESUMO

With the drastic growth of the economic and population, the global energy requirement is on the rise, and massive human and material resources have been put into the development of alternative and renewable energy sources. Biodiesel has been recognized as a green and sustainable alternative energy, but the raw materials-associated source and cost makes it difficult to achieve large-scale commercial production. Microbial lipids (ML) produced by oleaginous microbes have attracted more and more topics as feedstocks for biodiesel production because of their unique advantages (fast growth cycle, small footprint and so on). However, there are still many problems and challenges ahead towards commercialization of ML-based biodiesel, especially the cost of feedstock for ML production. Food waste (FW) rich in organic matters and nutrients is an excellent and almost zero-cost feedstock for ML production. However, current biological routes of FW-based ML production have some defects, which make it impossible to achieve full industrialization at present. Therefore, this review intends to provide a critical and comprehensive analysis of current biological routes of FW-based ML production with the focus on the challenges and solutions forward. The biological routes towards future FW-based ML production must be able to concurrently achieve economic feasibility and environmental sustainability. On this condition, an innovative integrated biological route for FW-based ML production has thus been put forward, which is also elucidated on its economic and environmental sustainability. Moreover, the prospective advantages, limitations and challenges for future scale-up of FW-based ML production have also been outlined, together with the perspectives and directions forward.


Assuntos
Biocombustíveis , Biocombustíveis/economia , Lipídeos , Perda e Desperdício de Alimentos
2.
Environ Res ; 244: 117422, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866529

RESUMO

The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.


Assuntos
Reatores Biológicos , Ácido Succínico , Fermentação , Compostos Orgânicos , Tecnologia
3.
Environ Res ; 255: 119158, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763279

RESUMO

The reliable and efficient nitrite production rate (NPR) through nitritation process is the prerequisite for the efficient running of subsequent processes, like the anammox process and the nitrite shunt. However, there has been scant research on stable and productive nitritation process in recent years. In this study, at a stable hydraulic retention time of 12.0 h and with precise and strict DO control, the upper limit of the NPR was initially investigated using a continuous-flow granular sludge reactor. The NPR of 1.69 kg/m3/d with a nitrite production efficiency of 81.97% was finally achieved, which set a record until now in similar research. The median sludge particle size of 270.0 µm confirmed the development of clearly defined granular sludge. The genus Nitrosomonas was the major ammonium oxidizing bacteria. In conclusion, this study provides valuable insights for the practical application of the effective nitritation process driving subsequent nitrogen removal processes.


Assuntos
Reatores Biológicos , Nitritos , Nitrogênio , Esgotos , Esgotos/microbiologia , Nitritos/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Nitrosomonas/metabolismo , Compostos de Amônio/metabolismo
4.
Mol Med ; 29(1): 91, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415103

RESUMO

BACKGROUND: E1A-associated 300-kDa protein (P300), an endogenous histone acetyltransferase, contributes to modifications of the chromatin landscape of genes involved in multiple cardiovascular diseases. Ferroptosis of vascular smooth muscle cells (VSMCs) is a novel pathological mechanism of aortic dissection. However, whether P300 regulates VSMC ferroptosis remains unknown. METHODS: Cystine deprivation (CD) and imidazole ketone erastin (IKE) were used to induce VSMC ferroptosis. Two different knockdown plasmids targeting P300 and A-485 (a specific inhibitor of P300) were used to investigate the function of P300 in the ferroptosis of human aortic smooth muscle cells (HASMCs). Cell counting kit-8, lactate dehydrogenase and flow cytometry with propidium iodide staining were performed to assess the cell viability and death under the treatment of CD and IKE. BODIPY-C11 assay, immunofluorescence staining of 4-hydroxynonenal and malondialdehyde assay were conducted to detect the level of lipid peroxidation. Furthermore, co-immunoprecipitation was utilized to explore the interaction between P300 and HIF-1α, HIF-1α and P53. RESULTS: Compared with normal control, the protein level of P300 was significantly decreased in HASMCs treated with CD and IKE, which was largely nullified by the ferroptosis inhibitor ferrostatin-1 but not by the autophagy inhibitor or apoptosis inhibitor. Knockdown of P300 by short-hairpin RNA or inhibition of P300 activity by A-485 promoted CD- and IKE-induced HASMC ferroptosis, as evidenced by a reduction in cell viability and aggravation of lipid peroxidation of HASMCs. Furthermore, we found that hypoxia-inducible factor-1α (HIF-1α)/heme oxygenase 1 (HMOX1) pathway was responsible for the impacts of P300 on ferroptosis of HASMCs. The results of co-immunoprecipitation demonstrated that P300 and P53 competitively bound HIF-1α to regulate the expression of HMOX1. Under normal conditions, P300 interacted with HIF-1α to inhibit HMOX1 expression, while reduced expression of P300 induced by ferroptosis inducers would favor HIF-1α binding to P53 to trigger HMOX1 overexpression. Furthermore, the aggravated effects of P300 knockdown on HASMC ferroptosis were largely nullified by HIF-1α knockdown or the HIF-1α inhibitor BAY87-2243. CONCLUSION: Thus, our results revealed that P300 deficiency or inactivation facilitated CD- and IKE-induced VSMC ferroptosis by activating the HIF-1α/HMOX1 axis, which may contribute to the development of diseases related to VSMC ferroptosis.


Assuntos
Ferroptose , Músculo Liso Vascular , Humanos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Environ Res ; 233: 116444, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331552

RESUMO

The effective conversion and recycling of organic solid waste contribute to the resolution of widespread issues such as global environmental pollution, energy scarcity and resource depletion. The anaerobic fermentation technology provides for the effective treatment of organic solid waste and the generation of various products. The analysis, which is based on bibliometrics, concentrates on the valorisation of affordable and easily accessible raw materials with high organic matter content as well as the production of clean energy substances and high value-added platform products. The processing and application status of fermentation raw materials such as waste activated sludge, food waste, microalgae and crude glycerol are investigated. To analyse the status of the preparation and engineering applications of the products, the fermentation products biohydrogen, VFAs, biogas, ethanol, succinic acid, lactic acid, and butanol are employed as representatives. Simultaneously, the anaerobic biorefinery process with multiple product co-production is sorted out. Product co-production can reduce waste discharge, enhance resource recovery efficiency, and serve as a model for improving anaerobic fermentation economics.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Fermentação , Resíduos Sólidos/análise , Anaerobiose , Alimentos , Esgotos , Biocombustíveis
6.
Environ Res ; 229: 115977, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100364

RESUMO

Organic solid waste (OSW) is not only a major source of environmental contamination, but also a vast store of useful materials due to its high concentration of biodegradable components that can be recycled. Composting has been proposed as an effective strategy for recycling OSW back into the soil in light of the necessity of a sustainable and circular economy. In addition, unconventional composting methods such as membrane-covered aerobic composting and vermicomposting have been reported more effective than traditional composting in improving soil biodiversity and promoting plant growth. This review investigates the current advancements and potential trends of using widely available OSW to produce fertilizers. At the same time, this review highlights the crucial role of additives such as microbial agents and biochar in the control of harmful substances in composting. Composting of OSW should include a complete strategy and a methodical way of thinking that can allow product development and decision optimization through interdisciplinary integration and data-driven methodologies. Future research will likely concentrate on the potential in controlling emerging pollutants, evolution of microbial communities, biochemical composition conversion, and the micro properties of different gases and membranes. Additionally, screening of functional bacteria with stable performance and exploration of advanced analytical methods for compost products are important for understanding the intrinsic mechanisms of pollutant degradation.


Assuntos
Compostagem , Poluentes Ambientais , Resíduos Sólidos/análise , Solo/química , Nitrogênio/análise
7.
BMC Pulm Med ; 23(1): 319, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658352

RESUMO

PURPOSE: To analyze the characteristics and prognostic values of Anaplastic Lymphoma Kinase (ALK) fusion gene partner, gene subtype and abundance in tumor tissues of advanced Non Small Cell Lung Cancer (NSCLC) patients with positive ALK fusion gene and to explore the best treatment mode of ALK-Tyrosine Kinase Inhibitors(TKIs). METHODS: Cases of advanced NSCLC patients with ALK positive confirmed by both Next Generation Sequencing (NGS) and immunohistochemistry were retrospectively collected. The relationships of Overall Survival (OS)/Progression Free Survival (PFS) between different mutation subtypes, mutation abundance, clinicopathological features were analyzed. OS/PFS between different treatment mode of ALK inhibitors were compared. RESULTS: Fifty-eight patients were enrolled. There were diverse fusion partners. Five subtypes of Echinoderm Microtubule-associated protein-Like 4 gene (EML4)-ALK fusion mutation were detected: V1,V2,V3,V5 and V7. The mutation abundance ranged from 0.13 to 27.77%, with a median of 5.34%. The abundance of V2 and V5 was higher than V1 and V3 respectively. There was no difference in OS between the low abundance group(≤ 5.34%) and the high abundance group(>5.34%) (P = 0.434). PFS of second-generation ALK inhibitors as first-line treatment was longer than that of Crizotinib as first-line (P<0.001). Never smokers had longer OS than current smokers(P = 0.001). CONCLUSIONS: There are differences in abundance between different fusion partners and subtypes in advanced NSCLC with positive ALK. OS is not associated with subtypes, mutation abundance and first line treatment option of either generation of ALK inhibitors. Smoking is a poor prognostic factor.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Estudos Retrospectivos , Crizotinibe/uso terapêutico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico
8.
J Cell Mol Med ; 26(10): 2866-2880, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35441443

RESUMO

Abdominal aortic aneurysm (AAA) is characterized by abdominal aorta dilatation and progressive structural impairment and is usually an asymptomatic and potentially lethal disease with a risk of rupture. To investigate the underlying mechanisms of AAA initiation and progression, seven AAA datasets related to human and mice were downloaded from the GEO database and reanalysed in the present study. After comprehensive bioinformatics analysis, we identified the enriched pathways associated with inflammation responses, vascular smooth muscle cell (VSMC) phenotype switching and cytokine secretion in AAA. Most importantly, we identified ATPase Na+ /K+ transporting subunit alpha 2 (ATP1A2) as a key gene that was significantly decreased in AAA samples of both human and mice; meanwhile, its reduction mainly occurred in VSMCs of the aorta; this finding was validated by immunostaining and Western blot in human and mouse AAA samples. Furthermore, we explored the potential upstream transcription factors (TFs) that regulate ATP1A2 expression. We found that the TF AT-rich interaction domain 3A (ARID3A) bound the promoter of ATP1A2 to suppress its expression. Our present study identified the ARID3A-ATP1A2 axis as a novel pathway in the pathological processes of AAA, further elucidating the molecular mechanism of AAA and providing potential therapeutic targets for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Proteínas de Ligação a DNA , ATPase Trocadora de Sódio-Potássio , Fatores de Transcrição , Angiotensina II/metabolismo , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/metabolismo
9.
Environ Res ; 203: 111881, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411547

RESUMO

In this study, waste cooking oil (WCO) co-fermentation with food waste by variable pH strategy was developed for microbial lipid production. Results showed that when WCO substitution rate within the range of 1.56-4.68% (corresponding to the WCO content in food waste), lipid production from Rhodosporidium toruloides 2.1389 could be increased by 7.2 g/kg food waste because of the better synergistic effect. Mechanism analysis revealed that the fatty acid salt produced from WCO under alkaline condition, as a surface active agent, could improve lipid production, but excessive WCO (29.2 g/L) would inhibit the lipid production due to its hindrance to the oxygen. The lipid composition analysis found that the produced lipid could be used as raw material for biodiesel production. It was estimated that 15.0 million tonnes of biodiesel could be produced from global food waste yearly by adopting the proposed WCO co-fermentation with variable pH strategy, together with reduction of about 0.31 million tonnes of CO2 equivalents and 1435 tonnes of SO2. It is expected that this study may lead to the paradigm shift in future biodiesel production from food waste.


Assuntos
Alimentos , Eliminação de Resíduos , Biocombustíveis/análise , Carbono , Culinária , Lipídeos
10.
Environ Res ; 209: 112728, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35081359

RESUMO

In this work, Mn-Co/GAC particle electrode was prepared by loading Mn and Co as catalysts on granular activated carbon (GAC) and used in a three-dimensional (3D) electrochemical system for mineralization of amoxicillin wastewater. Observation results by SEM, EDS and XRD confirmed that Mn and Co catalysts were successfully loaded onto GAC. The electrochemical properties were measured using an electrochemical workstation. Mn-Co/GAC had a much higher oxygen evolution potential (1.46V) than GAC (1.1V), which demonstrated that it could effectively reduce the oxygen evolution side reaction. In addition, Mn-Co/GAC had an electrochemically active surface area 1.34 times that of GAC and a much smaller mass transfer resistance than GAC, which could provide favorable conditions for the degradation of pollutants. The investigation of the influences of single operating parameters on total organic carbon (TOC) removal rate and electrical energy consumption (EEC) indicated that current density and treatment time had the greatest effect. In order to maximize TOC removal rate and minimize EEC, optimization of operating parameters was also carried out using response surface method in combination with central composite design. The optimal operating parameters were determined as current density of 5.68 mA/cm2, electrolyte concentration of 0.127M, particle electrode dosage of 31.14g and treatment time of 120min. Under this optimum operating condition, TOC removal rate of 85.24% and amoxicillin removal rate of 100% could be achieved with a low EEC of 0.073 kWh/g TOC. In addition, TOC removal rate and EEC were significantly improved compared to the use of bare GAC as particle electrode under the same operating conditions, demonstrating the excellent electrocatalytic ability of the new particle electrode Mn-Co/GAC. A possible mechanism of enhanced amoxicillin and TOC removal was also recommended. In summary, the 3D electrochemical method using Mn-Co/GAC particle electrodes is a suitable choice for amoxicillin wastewater treatment.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Amoxicilina/análise , Amoxicilina/química , Carvão Vegetal/química , Eletrodos , Oxirredução , Águas Residuárias/química , Poluentes Químicos da Água/análise
11.
Environ Res ; 214(Pt 2): 113929, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35868577

RESUMO

Due to its high amount of organic and biodegradable components that can be recycled, biowaste is not only a major cause of environmental contamination, but also a vast store of useful materials. The transformation of biowaste into energy and resources via biorefinery is an unavoidable trend, which could aid in reducing carbon emissions and alleviating the energy crisis in light of dwindling energy supplies and mounting environmental difficulties related with solid waste. In addition, the current pandemic and the difficult worldwide situation, with their effects on the economic, social, and environmental aspects of human life, have offered an opportunity to promote the transition to greener energy and sources. In this context, the current advancements and possible trends of utilizing widely available biowaste to produce key biofuels (such as biogas and biodiesel) and resources (such as organic acid, biodegradable plastic, protein product, biopesticide, bioflocculant, and compost) are studied in this review. To achieve the goal of circular bioeconomy, it is necessary to turn biowaste into high-value energy and resources utilizing biological processes. In addition, the usage of recycling technologies and the incorporation of bioconversion to enhance process performance are analyzed critically. Lastly, this work seeks to reduce a number of enduring obstacles to the recycling of biowaste for future use in the circular economy. Although it could alleviate the global energy issue, additional study, market analysis, and finance are necessary to commercialize alternative products and promote their future use. Utilization of biowaste should incorporate a comprehensive approach and a methodical style of thinking, which can facilitate product enhancement and decision optimization through multidisciplinary integration and data-driven techniques.


Assuntos
Biocombustíveis , Compostagem , Humanos , Reciclagem , Resíduos Sólidos
12.
Environ Res ; 205: 112453, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843726

RESUMO

To explore green technology for wheat straw pretreatment, this study combined the microwave or hydrothermal with ionic liquid ([Bmim][OAc]) on wheat straw followed by rumen fermentation. The optimal conditions of microwave assisted ionic liquids pretreatment (M-I) and hydrothermal assisted ionic liquids pretreatment (H-I) treatment were 360 W and 200 °C, and the corresponding lignin removal rates reached 35.3% and 25.4%, respectively. Rumen fermentation showed that the highest volatile fatty acid (VFA) yield was found in M-I group, followed by H-I group at 234 and 180 mg/g, respectively. As for enzymatic hydrolysis, the saccharification rates at 3 days of M-I (360 W) and H-I (200 °C) were determined to be 393 and 320 mg/g. The optimal ionic liquid dosage was determined to be 30% in consideration of cost and VFA conversion rate. M-I pretreatment plus the rumen fermentation enjoyed the benefit of no enzyme addition and high product recovery, which was worth further investigating.


Assuntos
Líquidos Iônicos , Anaerobiose , Animais , Fermentação , Hidrólise , Micro-Ondas , Rúmen
13.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432056

RESUMO

In order to increase the fractionation efficiency of the wheat straw, a deep eutectic solvent (DES) system consisting of chlorine/lactic acid was used in this study for wheat straw pretreatment. The outcomes exhibited that DES pretreatment significantly enhanced the capability to extract lignin, retain cellulose, and remove hemicellulose. The best condition for the pretreatment of wheat straw was 150 °C for 6 h. The process retained most cellulose in the pretreated biomass (49.94-73.60%), and the enzymatic digestibility of the pretreatment residue reached 89.98%. Further characterization of lignin showed that the high yield (81.54%) and the high purity (91.33%) resulted from the ether bond cleavage in lignin and the connection between hemicellulose and lignin. As for application, the enzymatic hydrolysis of the best condition reached 89.98%, and the lignin also had suitable stability. The investigation exhibited that DES pretreatment has the potential to realize an efficient fractionation of lignocellulosic biomass into high-applicability cellulose and lignin of high-quality.


Assuntos
Lignina , Triticum , Lignina/química , Solventes Eutéticos Profundos , Solventes/química , Celulose
14.
Int J Neurosci ; 130(9): 953-964, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31903827

RESUMO

Subarachnoid hemorrhage (SAH) is known as an acute catastrophic neurological disease that continues to be a serious and significant health problem worldwide. The mechanisms contributing to brain injury after SAH remain unclear despite decades of study focusing on early brain injury (EBI) and delayed brain injury (DBI). Neuroinflammation is a well-recognized consequence of SAH and may be responsible for EBI, cerebral vasospasm, and DBI. Toll-like receptors (TLRs) play a crucial role in the inflammatory response by recognizing damage-associated molecular patterns derived from the SAH. TLR4 is the most studied Toll-like receptor and is widely expressed in the central nervous system (CNS). It can be activated by the extravasated blood components in myeloid differentiation primary response-88/Toll/interleukin-1 receptor-domain-containing adapter-inducing interferon-ß (MyD88/TRIF)-dependent pathway after SAH. Transcription factors, such as nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF), that regulate the expression of proinflammatory cytokine genes are initiated by the activation of TLR4, which cause the brain damage after SAH. TLR4 may therefore be a useful therapeutic target for overcoming EBI and DBI in post-SAH neuroinflammation, thereby improving SAH outcome. In the present review, we summarized recent findings from basic and clinical studies of SAH, with a primary focus on the biological characteristics and functions of TLR4 and discussed the mechanisms associated with TLR4 signaling pathway in EBI and DBI following SAH.


Assuntos
Inflamação , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea , Receptor 4 Toll-Like/fisiologia , Vasoespasmo Intracraniano , Animais , Humanos , Inflamação/complicações , Inflamação/imunologia , Inflamação/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/imunologia , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/patologia
15.
Scand J Immunol ; 89(6): e12765, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30921475

RESUMO

CD137 is a promising target for immunostimulation strategies against cancer. Previous studies showed that CD137+ CD8+ T cells are enriched in antitumour effector T cells in both preclinical tumour models and cancer patients, but to date, such T cells in the blood of lung cancer patients have not been sufficiently investigated. In this study, circulating antigen-activated CD8+ T cell subsets, identified as CD137+ CD8+ or PD-1+ (programmed cell death protein 1) CD8+ , and regulatory T cells (Treg), identified as CD4+ CD25+ CD127low/- , in 40 untreated lung cancer patients and in 49 age- and sex-matched healthy controls (HCs) were assessed by flow cytometry. Results were evaluated for associations with lung cancer patient clinical characteristics. Correlations between antigen-activated CD8+ T cells and effector Treg (CTLA-4+ [cytotoxic T-lymphocyte antigen 4] CD4+ CD25+ CD127low/- ) were also investigated. Higher percentages of PD-1+ , CD137+ and PD-1+ CD137+ amongst CD8+ T cells were observed in lung cancer patients compared with HCs. The percentages of CD137+ CD8+ and PD-1+ CD137+ CD8+ T cell subsets amongst CD8+ T cells were positively correlated with thoracic tumour burden and were strongly positively correlated with the percentage of effector Treg subset. Smoking patients harboured higher percentages of the PD-1+ CD8+ T cell subset compared with non-smoking patients. This study demonstrated that circulating antigen-activated CD8+ T cells accumulated in lung cancer patients along with increased effector Treg and thoracic tumour burden. These findings aid a better understanding of immune-host interactions in lung cancer patients using peripheral blood, and further support immunotherapeutic intervention strategies using combination therapy for differential control of Treg and activation of tumour-specific effector T cells.


Assuntos
Ligante 4-1BB/metabolismo , Linfócitos T CD8-Positivos/citologia , Neoplasias Pulmonares/patologia , Linfócitos T Reguladores/citologia , Carga Tumoral/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Feminino , Citometria de Fluxo , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Linfócitos T Reguladores/imunologia
16.
J Environ Sci (China) ; 77: 336-345, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30573098

RESUMO

A pilot-scale multilevel contact oxidation reactors system, coupled with saran lock carriers, was applied for the treatment of poultry farm wastewater. The removal efficiencies of CODcr, ammonia, and the total nitrogen as well as the elimination performance of CODcr and total nitrogen along the three-level contact oxidation tanks under six designed operational models were investigated. Based on the performance of the nitrogen removal of the saran lock carriers and the distribution of anoxic-aerobic interspace under the suitable operation model, the mechanism of nitrogen removal of the system was also explored. The results revealed that the intermittent aeration under parallel model is the most suitable operation model, while the removal efficiencies of CODcr, ammonia, and the total nitrogen were 86.86%, 84.04%, and 80.96%, respectively. The effluent concentration of CODcr, ammonia, and the total nitrogen were 55.6 mg/L, 8.3 mg/L, and 12.0 mg/L, which satisfy both the discharge standard of pollutants for livestock and poultry breeding industry (GB 18596-2001) and the first grade of the integrated wastewater discharge standard (GB 8978-1996). Moreover, the mechanism for the nitrogen removal should be attributed to the plenty of anoxic-aerobic interspaces of the biofilm and the three-dimensional spiral structure of the saran lock carriers, where the oxygen-deficient distribution was suitable for the happening of the simultaneous nitrification and denitrification process. Therefore, the multilevel contact oxidation tanks system is an effective pathway for the treatment of the poultry farm wastewater on the strength of a suitable operation model and novel carriers.


Assuntos
Agricultura , Aves Domésticas , Águas Residuárias/química , Purificação da Água/métodos , Animais , Análise da Demanda Biológica de Oxigênio , Nitrogênio/isolamento & purificação , Oxirredução , Projetos Piloto , Esgotos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
17.
Biochem Biophys Res Commun ; 506(3): 548-556, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30366668

RESUMO

Intracranial aneurysms (IAs) result from the bulging of arterial walls secondary to several factors such as flow, vessel morphology, and genetics. Subarachnoid hemorrhage occurs when such walls rupture, leading to high disability and mortality. Despite numerous investigations pertaining to the relationship between geometric characteristics and IA rupture, only a few have obtained consistent results. This study aimed to further identify the potential genes associated with the pathogenesis of IAs, which may provide novel molecular biomarkers. We downloaded and reanalyzed six datasets, which were divided into four groups. IA walls and blood samples were screened for differentially expressed genes (DEGs); then, functional and pathway enrichment analyses were conducted. In total, 158 common DEGs were identified from Groups 1-3 and 396 genes (187 upregulated and 209 downregulated genes) were differentially expressed in Group 4. The functional analysis revealed that the DEGs were mainly associated with the major histocompatibility complex class II protein complex and antigen processing and presentation. Finally, we identified nine key genes, both in aneurysm tissue samples and blood samples, of which three were mostly associated with the progression and rupture of IAs. Bioinformatics was used to analyze the datasets of the ruptured IAs and identify potential biomarkers, which may provide information for the early detection and treatment of IAs.


Assuntos
Aneurisma Roto/genética , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Aneurisma Intracraniano/genética , Ontologia Genética , Humanos , Mapeamento de Interação de Proteínas
18.
J Environ Sci (China) ; 56: 247-253, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28571860

RESUMO

The pollution characteristic of polycyclic aromatic hydrocarbons (PAHs) in common used mineral oils, semi-refined oils, refined oils and solid wastes produced during the used mineral oil regeneration process was analyzed. The results showed that total PAHs content in six common used mineral oils was as follows: used engine oil>used quenching oil>used casting oil>used hydraulic oil>used antirust oil>used industrial lubricating oil. Furthermore, this order was dependent on the source of PAHs and oil working temperatures. Additionally, total PAHs content in regenerated oils was as follows: semi-refined oil>refined oil>crude oil, which was related to the catalytic cracking process of crude oil and adsorption refining process of semi-refined oil. The ranking of total PAHs content in regenerated wastes varied depending on the regeneration technology used as follows: waste adsorption sand>acid sludge>waste clay>precipitation sludge>cracked residue. In all types of used mineral oils and regenerated wastes, the maximum and minimum proportions of the total PAHs content were composed of 2-3 ring-PAHs and 5-6 ring-PAHs, respectively. The majority of PAHs in the used mineral oils entered into regenerated wastes during regeneration process, while a small number remained in the regenerated oil.


Assuntos
Poluentes Ambientais/análise , Óleo Mineral/química , Hidrocarbonetos Policíclicos Aromáticos/análise
19.
J Environ Sci (China) ; 50: 21-31, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28034426

RESUMO

A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was applied for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500A/m2, circulation rate of 5mL/min, AC dosage of 50g, and chloride concentration of 1.0g/L), the average removal efficiencies of chemical oxygen demand (CODcr), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254nm (UV254) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV254 were 76.6, 20.1, and 42.5mg/L, and 0.08Abs/cm, respectively. The effluent concentration of CODcr was less than 100mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODcr, NH3-N, TOC, and UV254 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electrochemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine.


Assuntos
Técnicas Eletroquímicas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Oxirredução
20.
Water Sci Technol ; 71(7): 1019-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860704

RESUMO

A suitable carbon source is significant for biological nitrate removal from groundwater. In this study, slow-release carbon sources containing polylactic acid (PLA) and starch at 8:2, 7:3, 6:4, 5:5, 4:6, and 3:7 ratios were prepared using a blending and fusing technique. The PLA/starch blend was then used as a solid carbon source for biological nitrate removal. The carbon release rate of PLA/starch was found to increase with increased starch content in leaching experiments. PLA/starch at 5:5 mass ratio was found to have the highest denitrification performance and organic carbon consumption efficiency in semi-continuous denitrification experiments, and was also revealed to support complete denitrification at 50 mg-N/L influent nitrate concentration in continuous experiments. The effluent nitrate concentration was <2 mg NO(3)(-)-N/L, which met the national standard (GB 14848-93) for groundwater. Scanning electron microscopy results further showed that the surface roughness of PLA/starch increased with prolonged experimental time, which may be conducive to microorganism attachment. Therefore, PLA/starch was a suitable carbon source and biofilm carrier for groundwater remediation.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Desnitrificação , Ácido Láctico/metabolismo , Nitratos/metabolismo , Polímeros/metabolismo , Amido/metabolismo , Poluentes Químicos da Água/metabolismo , Carbono/análise , Água Subterrânea , Microscopia Eletrônica de Varredura , Poliésteres
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa