Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 195(4): 2860-2876, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38502063

RESUMO

Anthraquinones (AQs) constitute the largest group of natural quinones, which are used as safe natural dyes and have many pharmaceutical applications. In plants, AQs are biosynthesized through two main routes: the polyketide pathway and the shikimate pathway. The latter primarily forms alizarin-type AQs, and the prenylation of 1,4-dihydroxy-2-naphthoic acid (DHNA) is the first pathway-specific step. However, the prenyltransferase (PT) responsible for this key step remains uncharacterized. In this study, the cell suspension culture of Madder (Rubia cordifolia), a plant rich in alizarin-type AQs, was discovered to be capable of prenylating DHNA to form 2-carboxyl-3-prenyl-1,4-naphthoquinone and 3-prenyl-1,4-naphthoquinone. Then, a candidate gene belonging to the UbiA superfamily, R. cordifoliadimethylallyltransferase 1 (RcDT1), was shown to account for the prenylation activity. Substrate specificity studies revealed that the recombinant RcDT1 recognized naphthoic acids primarily, followed by 4-hydroxyl benzoic acids. The prenylation activity was strongly inhibited by 1,2- and 1,4-dihydroxynaphthalene. RcDT1 RNA interference significantly reduced the AQs content in R. cordifolia callus cultures, demonstrating that RcDT1 is required for alizarin-type AQs biosynthesis. The plastid localization and root-specific expression further confirmed the participation of RcDT1 in anthraquinone biosynthesis. The phylogenetic analyses of RcDT1 and functional validation of its rubiaceous homologs indicated that DHNA-prenylation activity evolved convergently in Rubiaceae via recruitment from the ubiquinone biosynthetic pathway. Our results demonstrate that RcDT1 catalyzes the first pathway-specific step of alizarin-type AQs biosynthesis in R. cordifolia. These findings will have profound implications for understanding the biosynthetic process of the anthraquinone ring derived from the shikimate pathway.


Assuntos
Antraquinonas , Dimetilaliltranstransferase , Rubia , Antraquinonas/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Rubia/metabolismo , Rubia/genética , Rubia/enzimologia , Especificidade por Substrato , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Naftóis/metabolismo , Naftoquinonas/metabolismo , Prenilação , Regulação da Expressão Gênica de Plantas
3.
Microorganisms ; 12(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930585

RESUMO

The widespread dissemination of carbapenem-resistant Klebsiella pneumoniae (CRKP) and its drug resistance transfer poses a global public health threat. While previous studies outlined CRKP's drug resistance mechanism, there is limited research on strategies inhibiting CRKP drug resistance spread. This study investigates the potential of Bifidobacterium longum (B. longum) FB1-1, a probiotic, in curbing the spread of drug resistance among CRKP by evaluating its cell-free supernatant (CFS) for antibacterial activity. Evaluating the inhibitory effect of FB1-1 CFS on CRKP drug resistance spread involved analyzing its impact on drug resistance and virulence gene expression; drug resistance plasmid transfer FB1-1 CFS exhibited an MIC range of 125 µL/mL against CRKP. After eight hours of co-culture, CFS achieved a 96% and 100% sterilization rate at two and four times the MIC, respectively. At sub-inhibitory concentrations (1/2× MIC), FB1-1 CFS reduced the expression of the bla_KPC gene, which is pivotal for carbapenem resistance, by up to 62.13% across different CRKP strains. Additionally, it markedly suppressed the expression of the uge gene, a key virulence factor, by up to 91%, and the fim_H gene, essential for bacterial adhesion, by up to 53.4%. Our study primarily focuses on determining the inhibitory effect of FB1-1 CFS on CRKP strains harboring the bla_KPC gene, which is a critical resistance determinant in CRKP. Furthermore, FB1-1 CFS demonstrated the ability to inhibit the transfer of drug resistance plasmids among CRKP strains, thus limiting the horizontal spread of resistance genes. This study highlights FB1-1 CFS's inhibitory effect on CRKP drug resistance spread, particularly in strains carrying the bla_KPC gene, thus offering a novel idea and theoretical foundation for developing antibacterial drugs targeting CRKP resistance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa