Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(23): e2300953120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253015

RESUMO

Self-healing is a bioinspired strategy to repair damaged conductors under repetitive wear and tear, thereby largely extending the life span of electronic devices. The self-healing process often demands external triggering conditions as the practical challenges for the widespread applications. Here, a compliant conductor with electrically self-healing capability is introduced by combining ultrahigh sensitivity to minor damages and reliable recovery from ultrahigh tensile deformations. Conductive features are created in a scalable and low-cost fabrication process comprising a copper layer on top of liquid metal microcapsules. The efficient rupture of microcapsules is triggered by structural damages in the copper layer under stress conditions as a result of the strong interfacial interactions. The liquid metal is selectively filled into the damaged site for the instantaneous restoration of the metallic conductivity. The unique healing mechanism is responsive to various structural degradations including microcracks under bending conditions and severe fractures upon large stretching. The compliant conductor demonstrates high conductivity of ∼12,000 S/cm, ultrahigh stretchability of up to 1,200% strain, an ultralow threshold to activate the healing actions, instantaneous electrical recovery in microseconds, and exceptional electromechanical durability. Successful implementations in a light emitting diode (LED) matrix display and a multifunctional electronic patch demonstrate the practical suitability of the electrically self-healing conductor in flexible and stretchable electronics. The developments provide a promising approach to improving the self-healing capability of compliant conductors.

2.
Circ Res ; 132(10): 1405-1424, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167356

RESUMO

SARS-CoV-2, the virus underlying COVID-19, has now been recognized to cause multiorgan disease with a systemic effect on the host. To effectively combat SARS-CoV-2 and the subsequent development of COVID-19, it is critical to detect, monitor, and model viral pathogenesis. In this review, we discuss recent advancements in microfluidics, organ-on-a-chip, and human stem cell-derived models to study SARS-CoV-2 infection in the physiological organ microenvironment, together with their limitations. Microfluidic-based detection methods have greatly enhanced the rapidity, accessibility, and sensitivity of viral detection from patient samples. Engineered organ-on-a-chip models that recapitulate in vivo physiology have been developed for many organ systems to study viral pathology. Human stem cell-derived models have been utilized not only to model viral tropism and pathogenesis in a physiologically relevant context but also to screen for effective therapeutic compounds. The combination of all these platforms, along with future advancements, may aid to identify potential targets and develop novel strategies to counteract COVID-19 pathogenesis.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Microfluídica , Sistemas Microfisiológicos
3.
Small ; 20(16): e2308499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009797

RESUMO

Efficient construction of proton transport channels in proton exchange membranes maintaining conductivity under varied humidity is critical for the development of fuel cells. Covalent organic frameworks (COFs) hold great potential in providing precise and fast ion transport channels. However, the preparation of continuous free-standing COF membranes retaining their inherent structural advantages to realize excellent proton conduction performance is a major challenge. Herein, a zwitterionic COF material bearing positive ammonium ions and negative sulphonic acid ions is developed. Free-standing COF membrane with adjustable thickness is constructed via surface-initiated polymerization of COF monomers. The porosity, continuity, and stability of the membranes are demonstrated via the transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) characterization. The rigidity of the COF structure avoids swelling in aqueous solution, which improves the chemical stability of the proton exchange membranes and improves the performance stability. In the higher humidity range (50-90%), the prepared zwitterionic COF membrane exhibits superior capability in retaining the conductivity compared to COF membrane merely bearing sulphonic acid group. The established strategy shows the potential for the application of zwitterionic COF in the proton exchange membrane fuel cells.

4.
Angew Chem Int Ed Engl ; : e202404816, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38788189

RESUMO

Room-temperature sodium-sulfur (RT Na-S) batteries, noted for their low material costs and high energy density, are emerging as a promising alternative to lithium-ion batteries (LIBs) in various applications including power grids and standalone renewable energy systems. These batteries are commonly assembled with glass fiber membranes, which face significant challenges like the dissolution of polysulfides, sluggish sulfur conversion kinetics, and the growth of Na dendrites. Here, we develop an amorphous two-dimensional (2D) iron tin oxide (A-FeSnOx) nanosheet with hierarchical vacancies, including abundant oxygen vacancies (Ovs) and nano-sized perforations, that can be assembled into a multifunctional layer overlaying commercial separators for RT Na-S batteries. The Ovs offer strong adsorption and abundant catalytic sites for polysulfides, while the defect concentration is finely tuned to elucidate the polysulfides conversion mechanisms. The nano-sized perforations aid in regulating Na ions transport, resulting in uniform Na deposition. Moreover, the strategic addition of trace amounts of Ti3C2 (MXene) forms an amorphous/crystalline (A/C) interface that significantly improves the mechanical properties of the separator and suppresses dendrite growth. As a result, the task-specific layer achieves ultra-light (~0.1 mg cm-2), ultra-thin (~200 nm), and ultra-robust (modulus=4.9 GPa) characteristics. Consequently, the RT Na-S battery maintained a high capacity of 610.3 mAh g-1 and an average Coulombic efficiency of 99.9 % after 400 cycles at 0.5 C.

5.
Small ; 19(16): e2207646, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670080

RESUMO

Porous carbon materials with hollow structure, on account of the extraordinary morphology, reveal fascinating prospects in lithium-ion batteries, electrocatalysis, etc. However, collapse in ultrathin carbon spheres due to insufficient rigidity in such thin materials obstructs further enhanced capability. Based on hyper-crosslinked polymers (HCPs) with sufficient pore structure and rigid framework, a new bottom-up strategy is proposed to construct SiO2 @HCPs directly from aromatic monomers. Heteroatom and function groups can be facilely introduced to the skeleton. The thickness of HCPs' wall can be tuned from 9 to 20 nm, which is much thinner than that of hollow sphere synthesized by the traditional method, and the sample with a thickness of 20 nm shows the highest surface area of 1633 m2 g-1 . The oxygen reduction reaction is conducted and the CoNHCS electrocatalysts with an ultrathin thickness of 5 nm display higher half-wave potential than those of bulk samples, even better than commercial Pt/C electrode. On account of the hollow structure, the relative current density loss of electrocatalysts is only 4.1% in comparison with 27.7% in Pt/C electrode during the 15 000 s test, indicating an obvious higher long-term stability. The new strategy to construct hollow HCPs may shed light on efficient chemical catalysis, drug delivery, and electrocatalysis.

6.
Small ; 19(21): e2300386, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823446

RESUMO

Stretchable microsupercapacitors represent emerging miniaturized energy-storage devices for next-generation deformable electronics. Two-dimensional (2D) transition metal carbides (MXenes) are considered attractive electrode materials due to their metallic conductivity, hydrophilic surfaces, and excellent processability. Here, an ultrastretchable microsupercapacitor of interdigitated MXene microelectrodes with crumpled surface textures is created. The microsupercapacitor shows a series of attractive properties including a high specific capacitance of ≈185 mF cm-2 , ultrahigh stretchability up to 800% area strain, and ≈89.7% retention of the initial capacitance after 1000 stretch-relaxation cycles. In addition to static strains, the microsupercapacitor demonstrates robust mechanical properties to retain stable charging-discharging capability under dynamic stretching at different strain rates. A self-powering circuit system utilizes four microsupercapacitor packs to power a light-emitting diode (LED) array, which exhibits stable operations under large tensile strain and skin-attached wearable settings. The developments offer a generic design strategy to enhance the deformability of microsupercapacitors based on 2D nanomaterials.

7.
Small ; 19(52): e2304459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649202

RESUMO

Despite being one of the most promising materials in anode materials, molybdenum sulfide (MoS2 ) encounters certain obstacles, such as inadequate cycle stability, low conductivity, and unsatisfactory charge-discharge (CD) rate performance. In this study, a novel approach is employed to address the drawbacks of MoS2 . Carbon polymer dots (CPDs) are incorporated to prepare three-dimensional (3D) nanoflower-like spheres of MoS2 @CPDs through the self-assembly of MoS2 2D nanosheets, followed by annealing at 700 °C. The CPDs play a main role in the creation of the nanoflower-like spheres and also mitigate the MoS2 nanosheet limitations. The nanoflower-like spheres minimize volume changes during cycling and improve the rate performance, leading to exceptional rate performance and cycling stability in both Lithium-ion and Sodium-ion batteries (LIBs and SIBs). The optimized MoS2 @CPDs-2 electrode achieves a superb capacity of 583.4 mA h g-1 at high current density (5 A g-1 ) after 1000 cycles in LIBs, and the capacity remaining of 302.8 mA h g-1 after 500 cycles at 5 A g-1 in SIBs. Additionally, the full cell of LIBs/SIBs exhibits high capacity and good cycling stability, demonstrating its potential for practical application in fast-charging and high-energy storage.

8.
Sensors (Basel) ; 23(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139689

RESUMO

With the rapid development of multimedia technology, personnel verification systems have become increasingly important in the security field and identity verification. However, unimodal verification systems have performance bottlenecks in complex scenarios, thus triggering the need for multimodal feature fusion methods. The main problem with audio-visual multimodal feature fusion is how to effectively integrate information from different modalities to improve the accuracy and robustness of the system for individual identity. In this paper, we focus on how to improve multimodal person verification systems and how to combine audio and visual features. In this study, we use pretrained models to extract the embeddings from each modality and then perform fusion model experiments based on these embeddings. The baseline approach in this paper involves taking the fusion feature and passing it through a fully connected (FC) layer. Building upon this baseline, we propose three fusion models based on attentional mechanisms: attention, gated, and inter-attention. These fusion models are trained on the VoxCeleb1 development set and tested on the evaluation sets of the VoxCeleb1, NIST SRE19, and CNC-AV datasets. On the VoxCeleb1 dataset, the best system performance achieved in this study was an equal error rate (EER) of 0.23% and a detection cost function (minDCF) of 0.011. On the evaluation set of NIST SRE19, the EER was 2.60% and the minDCF was 0.283. On the evaluation set of the CNC-AV set, the EER was 11.30% and the minDCF was 0.443. These experimental results strongly demonstrate that the proposed fusion method can significantly improve the performance of multimodal character verification systems.


Assuntos
Identificação Biométrica , Tecnologia da Informação , Humanos
9.
Macromol Rapid Commun ; 43(2): e2100449, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34624165

RESUMO

Processable microporous organic polymers (MOPs) attract incomparable research interest because their vairous types, such as monoliths and membranes are for practical application. Most processable MOPs usually need harsh conditions such as the use of expensive metal catalysts, specialized stereospecific monomers, etc., which restrict the sustainable and real applications of processable MOPs. Therefore, the economical mass production of processable MOPs remains a formidable challenge. Herein, a novel strategy is reported for constructing processable hypercrosslinked polymers (HCPs) need two steps synthesis of pre-crosslinking and deep-crosslinking using divinylbenzene (DVB) as a self-crosslinking monomer under the catalysis of a small amount of FeCl3 . The resulting HCPs monoliths possess high BET surface area of 1033-1056 m2 g-1 with hierarchical porosity, and show excellent mechanical strength up to 65 MPa. It is, to the best of authors' knowledge, the first report of using aromatic vinyl monomers as self-crosslinking monomers to generate HCPs monoliths with high surface area, yielding no by-products, and high mechanical strength.


Assuntos
Polímeros , Catálise , Porosidade
10.
J Prosthodont ; 31(4): 282-288, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35000263

RESUMO

The phenomenon of fusion is a type of tooth dysplasia, but few studies have systematically described the treatment of this kind of abnormality. This paper summarizes the treatment methods for fused teeth and classifies the management schemes according to whether the pulp is fused. Then, the treatment for a patient with bilateral anterior tooth fusion is reported. After orthodontic treatment, porcelain veneers were used to restore the normal shape and aesthetic appearance of the anterior teeth.


Assuntos
Dentes Fusionados , Porcelana Dentária , Facetas Dentárias , Estética Dentária , Humanos
11.
Int J Clin Pract ; 75(5): e13964, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33370470

RESUMO

BACKGROUND: The impact of robot-assisted techniques versus conventional freehand techniques in terms of the accuracy of pedicle screw placement remains conflicting. This meta-analysis was performed to evaluate this relationship. METHODS: A systematic literature search up to July 2020 was performed and 15 studies were detected with 6041 pedicle screw placements with 2748 of them were using robot-assisted techniques and 3293 were conventional freehand techniques. They reported relationships between robot-assisted techniques and conventional freehand techniques in pedicle screw placement. Odds ratio (OR) or Mean differences (MD) with 95% confidence intervals (CIs) was calculated comparing the robot-assisted techniques to conventional freehand techniques in pedicle screw placement risks using the dichotomous and continuous method with a random or fixed-effect model. RESULTS: Robot-assisted techniques had a significantly higher screw position grade A in Gertzbein-Robbins classification of the screw placement accuracy (OR, 2.43; 95% CI, 1.66-3.54, P < .001); shorter postoperative stay (MD, -0.67; 95% CI, -1.16 to -0.19, P < .001); lower intraoperative blood loss (MD, -91.64; 95% CI, -152.44 to -30.83, P = .003); fewer intraoperative radiation dose (MD, -23.52; 95% CI, -40.12 to -6.0.93, P = .005); and low proximal facet violations (MD, 0.08; 95% CI, 0.03-0.20, P < .001) compared with conventional freehand techniques. However, no significant difference was found between robot-assisted techniques and conventional freehand techniques in surgical time (OR, 11.71; 95% CI, 03.27-26.70, P = .13); visual analogue scale scores (MD, -0.15; 95% CI, -0.54 to 0.23, P = .44); and Oswestry disability index scores (MD, 0.21; 95% CI, -5.09-5.51, P = .94). CONCLUSIONS: The extent of the improvement with robot-assisted techniques in screw position grade A in Gertzbein-Robbins classification of the screw placement accuracy, postoperative stay, intraoperative blood loss, intraoperative radiation dose, and proximal facet violations was significantly better than conventional freehand techniques. This relationship forces us to recommend robot-assisted techniques for pedicle screw placement to avoid any possible negative postoperative results.


Assuntos
Parafusos Pediculares , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Razão de Chances , Duração da Cirurgia
12.
Macromol Rapid Commun ; 40(16): e1900168, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31206971

RESUMO

Porous organic polymers (POPs) have enormous applications in various fields and thus have received a lot of research attention in recent decades. Numerous synthetic methods have been developed, but mild synthesis conditions and fast polymerization rate are highly desired. Herein, high porous POPs with high surface areas from aromatic vinyl monomers by using acid catalysis method is reported. The polymerization is ultrafast and could be accomplished even in 5 min at room temperature. Furthermore, the surface area can be tuned by using various acid catalysts and controlling the reaction time. Due to the high surface area, these POPs show promising adsorption of carbon dioxide and hydrogen, respectively. Furthermore, the large π-system of the building block and high surface area of the POPs also make them show potential applications in photocatalytic hydrogen evolution as well as promising catalyst support for metal nanoparticles.


Assuntos
Hidrocarbonetos Aromáticos/química , Polímeros/química , Compostos de Vinila/química , Catálise , Concentração de Íons de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Polimerização , Porosidade , Propriedades de Superfície
13.
Angew Chem Int Ed Engl ; 57(37): 11968-11972, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059185

RESUMO

Covalent triazine frameworks (CTFs) with aromatic triazine linkages have recently received increasing interest for various applications because of their rich nitrogen content and high chemical stability. Owing to the strong aromatic C=N bond and high chemical stability, only a few CTFs are crystalline, and most CTFs are amorphous. Herein we report a new general strategy to give highly crystalline CTFs by in situ formation of aldehyde monomers through the controlled oxidation of alcohols. This general strategy allows a series of crystalline CTFs with different monomers to be prepared, which are shown to have higher thermal stability and enhanced performance in photocatalysis as compared with the less crystalline or amorphous CTFs. This open-system approach is very simple and convenient, which presents a potential pathway to large-scale industrial production of crystalline CTFs.

14.
J Nanosci Nanotechnol ; 16(2): 1537-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433616

RESUMO

In this paper, we introduce an easy method for fabricating Si nanowires with nanodots using nanosphere lithography. First, a self-assembly ordered single layer of polystyrene nanospheres with a diameter of 220 nm was prepared on Si substrate. Secondly, the polystyrene spheres monolayer was etched by 02 with different time from 10 s to 35 s. After this etching process, the polystyrene nanowires between polystyrene spheres were fabrication. If the etching time was longer than 35 s, there were no polystyrene nanowires. Thereafter, the following etching process with carbon fluoride was performanced. The polystyrene nanowires and nanosphers were worked as masks. Finally, the Si nanowires with nanodots were formed. The size and morphology can be controlled by etching process. This technique for forming nanostructure arrays using nanosphere lithography can be applied in many areas of science and technology.


Assuntos
Nanosferas/química , Nanofios/química , Poliestirenos/química , Nanosferas/ultraestrutura , Nanofios/ultraestrutura
15.
Adv Sci (Weinh) ; 11(3): e2304874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939293

RESUMO

Since the initial discovery of Ti3 C2 a decade ago, there has been a significant surge of interest in 2D MXenes and MXene-based composites. This can be attributed to the remarkable intrinsic properties exhibited by MXenes, including metallic conductivity, abundant functional groups, unique layered microstructure, and the ability to control interlayer spacing. These properties contribute to the exceptional electrical and mechanical performance of MXenes, rendering them highly suitable for implementation as candidate materials in flexible and wearable energy storage devices. Recently, a substantial number of novel research has been dedicated to exploring MXene-based flexible materials with diverse functionalities and specifically designed structures, aiming to enhance the efficiency of energy storage systems. In this review, a comprehensive overview of the synthesis and fabrication strategies employed in the development of these diverse MXene-based materials is provided. Furthermore, an in-depth analysis of the energy storage applications exhibited by these innovative flexible materials, encompassing supercapacitors, Li-ion batteries, Li-S batteries, and other potential avenues, is conducted. In addition to presenting the current state of the field, the challenges encountered in the implementation of MXene-based flexible materials are also highlighted and insights are provided into future research directions and prospects.

16.
Exploration (Beijing) ; 4(1): 20230034, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38854495

RESUMO

Plasma etching treatment is an effective strategy to improve the electrocatalytic activity, but the improvement mechanism is still unclear. In this work, a nitrogen-doped carbon nanotube-encased iron nanoparticles (Fe@NCNT) catalyst is synthesized as the model catalyst, followed by plasma etching treatment with different parameters. The electrocatalytic activity improvement mechanism of the plasma etching treatment is revealed by combining the physicochemical characterizations and electrochemical results. As a result, highly active metal-nitrogen species introduced by nitrogen plasma etching treatment are recognized as the main contribution to the improved electrocatalytic activity, and the defects induced by plasma etching treatment also contribute to the improvement of the electrocatalytic activity. In addition, the prepared catalyst also demonstrates superior ORR activity and stability than the commercial Pt/C catalyst.

17.
Food Chem ; 459: 140336, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39003859

RESUMO

The cell membrane, consisting of a phospholipid bilayer, is an important defense system of lactic acid bacteria (LAB) against adverse conditions. However, this membrane gets damaged during the process of spray drying of LAB into powder. In this study, two strains of Lactobacillus bulgaricus L9-7 and L4-2-12 with significantly different survival rates of about 22.49% and 0.43% after spray drying were explored at the cell membrane level. A total of 65 significantly different lipid species were screened from the cell membranes of two strains, with cardiolipin (CL) 15:1_22:6_24:0_28:0 being the crucial lipid species affecting membrane resistance. Finally, the KEGG enrichment analysis revealed that glycerophospholipid metabolism was the most predominant pathway, and eleven lipid species were annotated, including CL. Overall, this paper provides valuable insights into enhancing the heat tolerance of LAB.

18.
ACS Nano ; 18(4): 2685-2707, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241491

RESUMO

Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.

19.
ACS Nano ; 18(3): 2335-2345, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189251

RESUMO

Stretchable sweat sensors have become a personalized wearable platform for continuous, noninvasive health monitoring through conformal integration with the human body. Typically, these devices are coupled with soft microfluidic systems to control sweat flow during advanced analysis processes. However, the implementation of these soft microfluidic devices is limited by their high fabrication costs and the need for skin adhesives to block natural perspiration. To overcome these limitations, a stretchable and smart wettable patch has been proposed for multiplexed in situ perspiration analysis. The patch includes a porous membrane in the form of a patterned microfoam and a nanofiber layer laminate, which extracts sweat selectively from the skin and directs its continuous flow across the device. The integrated electrochemical sensor array measures multiple biomarkers simultaneously such as pH, K+, and Na+. The soft sensing patch comprises compliant materials and structures that allow deformability of up to 50% strain, which enables a stable and seamless interface with the curvilinear human body. During continuous physical exercise, the device has demonstrated a special operating mode by actively accumulating sweat from the skin for multiplex electrochemical analysis of biomarker profiles. The smart wettable membrane provides an affordable solution to address the sampling challenges of in situ perspiration analysis.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Pele , Dispositivos Lab-On-A-Chip
20.
Adv Sci (Weinh) ; : e2400596, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887178

RESUMO

Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr-/-) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa