Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Opt Express ; 31(14): 23095-23105, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475402

RESUMO

We present and numerically verify a functionally hybrid dual-mode tunable polarization conversion metasurface based on graphene and vanadium dioxide (VO2). The tunable polarization converter consists of two patterned graphene layers separated by grating which is composed of gold and VO2. Due to the existence of phase change material VO2, the polarization conversion mode can be switched flexibly between the transmission and reflection modes. Theoretical calculations show the proposed polarization conversion metasurface can obtain giant asymmetric transmission (AT) at 0.42 and 0.77 THz when VO2 is in the insulating state. Conversely, when VO2 is in the metallic state, the converter switches to the reflection mode, demonstrating broadband polarization conversion for both forward and backward incidences. Furthermore, the conductivity of graphene can be modulated by changing the gate voltage, which allows dynamic control polarization conversion bandwidth of the reflection mode as well as the AT of the transmission mode. The robustness of the metasurface has also been verified, the high polarization conversion efficiency and AT can be maintained over wide incidence angles up to 65° for both the xoz plane and yoz plane. These advantages make the proposed hybrid tunable polarization conversion metasurface a promising candidate for THz radiation switching and modulation.

2.
Opt Lett ; 47(12): 3007-3010, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35709037

RESUMO

Chiral edge states (CESs) have been demonstrated at the external boundary of a valley photonic crystal (VPC), with flexibly tunable group velocity and frequency range by adjusting the boundary structure. In this work, we show parallel and antiparallel CESs located at two opposite VPC-air boundaries, which contain wave components belonging to opposite valleys or the same valley. In addition, we design a meta-structure with four types of air-contacted boundary that support CESs in different frequency ranges. The structure also has an internal interface channel supporting the valley edge state that bridges the top and bottom boundaries. We show that the CESs, while excited at a given port, can be exclusively guided to the other three ports, depending on the operating frequency. Our work provides an alternative way to design compact topological devices for optical waveguides and wave splitters.

3.
Mikrochim Acta ; 189(10): 381, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098809

RESUMO

Different morphology of N-doped carbon materials, including three-dimensional interconnected N-doped hierarchically porous carbon networks (3D-NC), two-dimensional ultrathin porous carbon nanosheets (2D-NC), and bulk N-doped carbon with micron size (bulk-NC), was easily prepared by using NaCl crystal templates-assisted strategy. Compared with bare glassy carbon, bulk-NC, and 2D-NC, the as-synthesized 3D-NC exhibits excellent electrochemical activity toward the oxidation and sensing of three kinds of common environmental pollutants dihydroxybenzene isomers (hydroquinone (HQ), catechol (CC), and resorcinol (RS)). The impressive electrochemical activity of 3D-NC can be interpreted by its large specific surface area, continuous network-like morphology, superior electro-catalytic ability, and strong accumulation efficiency. Differential pulse voltammetry (DPV) test showed the 3D-NC-modified electrode exhibited three well-separated oxidation peaks at 0.05 V, 0.14 V, and 0.45 V vs. saturated calomel electrode (SCE) for HQ, CC, and RS, and their detection limits were evaluated to be as low as 0.0044, 0.012, and 0.016 mg L-1, respectively. Finally, a novel electrochemical analytical platform is successfully fabricated for the simultaneous monitoring of hydroquinone, catechol, and resorcinol with high sensitivity. When used for real wastewater samples analysis, recovery ratio ranging from 94 to 108% with lower than 5% of relative standard deviation (RSD) values was achieved. This work proves a facile strategy to prepare morphology-controlled N-doped carbon-based material and demonstrates its high application potential for environmental monitoring and electrochemical analysis.


Assuntos
Carbono , Hidroquinonas , Carbono/química , Catecóis/química , Hidroquinonas/química , Porosidade , Resorcinóis/análise
4.
J Synchrotron Radiat ; 28(Pt 3): 854-863, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949993

RESUMO

The reverse projection protocol results in fast phase-contrast imaging thanks to its compatibility with conventional computed-tomography scanning. Many researchers have proposed variants. However, all these reverse projection methods in grating-based phase-contrast imaging are built on the hypothesis of the synchronous phase of reference shifting curves in the whole field of view. The hypothesis imposes uniformity and alignment requirements on the gratings, thus the field of view is generally limited. In this paper, a generalized reverse projection method is presented analytically for the case of non-uniform reference in grating-based phase tomography. The method is demonstrated by theoretical derivation, numerical simulations and synchrotron radiation experiments. The influence of imaging position to sensitivity, and the phase-wrapping phenomenon are also discussed. The proposed method combines the advantages of the high efficiency of the reverse projection method and the universal applicability of the phase-stepping method. The authors believe that the method would be used widely in fast and dose-constrained imaging.

5.
J Synchrotron Radiat ; 27(Pt 2): 477-485, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153288

RESUMO

In transmission X-ray microscopy (TXM) systems, the rotation of a scanned sample might be restricted to a limited angular range to avoid collision with other system parts or high attenuation at certain tilting angles. Image reconstruction from such limited angle data suffers from artifacts because of missing data. In this work, deep learning is applied to limited angle reconstruction in TXMs for the first time. With the challenge to obtain sufficient real data for training, training a deep neural network from synthetic data is investigated. In particular, U-Net, the state-of-the-art neural network in biomedical imaging, is trained from synthetic ellipsoid data and multi-category data to reduce artifacts in filtered back-projection (FBP) reconstruction images. The proposed method is evaluated on synthetic data and real scanned chlorella data in 100° limited angle tomography. For synthetic test data, U-Net significantly reduces the root-mean-square error (RMSE) from 2.55 × 10-3 µm-1 in the FBP reconstruction to 1.21 × 10-3 µm-1 in the U-Net reconstruction and also improves the structural similarity (SSIM) index from 0.625 to 0.920. With penalized weighted least-square denoising of measured projections, the RMSE and SSIM are further improved to 1.16 × 10-3 µm-1 and 0.932, respectively. For real test data, the proposed method remarkably improves the 3D visualization of the subcellular structures in the chlorella cell, which indicates its important value for nanoscale imaging in biology, nanoscience and materials science.


Assuntos
Chlorella/ultraestrutura , Aprendizado Profundo , Microtomografia por Raio-X/métodos , Imageamento Tridimensional , Interpretação de Imagem Radiográfica Assistida por Computador
6.
J Synchrotron Radiat ; 26(Pt 5): 1808-1814, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490173

RESUMO

Transmission X-ray microscopes (TXMs) have become one of the most powerful tools for imaging 3D structures of nano-scale samples using the computed tomography (CT) principle. As a major error source, sample jitter caused by mechanical instability of the rotation stage produces shifted 2D projections, from which reconstructed images contain severe motion artifacts. In this paper, a jitter correction algorithm is proposed, that has high accuracy and computational efficiency for TXM experiments with or without nano-particle markers. Geometric moments (GMs) are measured on segmented projections for each angle and fitted to sinusoidal curves in the angular direction. Sample jitter is estimated from the difference between the measured and the fitted GMs for image correction. On a digital phantom, the proposed method removes jitter errors at different noise levels. Physical experiments on chlorella cells show that the proposed GM method achieves better spatial resolution and higher computational efficiency than the re-projection method, a state-of-the-art algorithm using iterative correction. It even outperforms the approach of manual alignment, the current gold standard, on faithfully maintaining fine structures on the CT images. Our method is practically attractive in that it is computationally efficient and lowers experimental costs in current TXM studies without using expensive nano-particles markers.


Assuntos
Aumento da Imagem/métodos , Imageamento Tridimensional , Microscopia Eletrônica de Transmissão , Tomografia Computadorizada por Raios X , Algoritmos , Artefatos , Simulação por Computador , Imagens de Fantasmas
7.
Opt Express ; 27(14): 19436-19447, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503703

RESUMO

With their unprecedented flexibility in manipulating electromagnetic waves, metamaterials provide a pathway to structural materials that can fill the so-called "THz gap". It has been reported that vanadium dioxide (VO2) experiences a three orders of magnitude increase in THz electrical conductivity when it undergoes an insulator-to-metal transition. Here, we propose a VO2 based THz metamaterial absorber exhibiting broadband absorptivity that arises from the multiple resonances supported by a delicately balanced doubly periodic array of VO2 structures and numerically demonstrate that the corresponding absorption behavior is highly dependent on the VO2's THz electrical properties. Considering the phase transition induced dramatic change in VO2's material property, the proposed metamaterial absorbers have the potential for strong modulation and switching of broadband THz radiation.

8.
Phys Chem Chem Phys ; 21(38): 21438-21444, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31531470

RESUMO

Magnon-driven interfacial magnetoelectric coupling in Co/PMN-PT multiferroic heterostructures is investigated at room temperature. The electric field controlled ferromagnetic resonance field possesses a loop-like curve, with a large resonance field shift between positive and negative remanent polarizations, which confirms a non-volatile strong magnetoelectric coupling. However, with a non-magnetic Ta layer inserted at the Co/PMN-PT interface, a piezostrain-induced butterfly-like curve of the resonance field versus applied electric field of the Co/Ta/PMN-PT multiferroic heterostructure is observed. Further, the non-volatile behavior of the resonance field changing with the applied electric field can be obtained, consistent with the result of polarization versus applied electric field curve, which can be attributed to the magnon-driven interfacial magnetoelectric coupling, showing a strong correlation of magnetization of Co thin film and the polarization of PMN-PT. The result is promising for the design of future multiferroic devices.

9.
Biomed Microdevices ; 20(4): 83, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30221311

RESUMO

Isolation and detection of circulating tumor cells (CTCs) has showed a great clinical impact for tumor diagnosis and treatment monitoring. Despite significant progresses of the existing technologies, feasible and cost-effective CTC isolation techniques are more desirable. In this study, a novel method was developed for highly efficient isolation of CTCs from breast cancer patients based on biophysical properties using a pyramid-shaped microchamber. Through optimization tests, the outlet height of 6 µm and the flow rate of 200 µL/min were chosen as the optimal conditions. The capture efficiencies of more than 85% were achieved for cancer cell lines (SKBR3, BGC823, PC3, and H1975) spiked in DMEM and healthy blood samples without clogging issue. In clinic assay, the platform identified CTCs in 13 of 20 breast cancer patients (65%) with an average of 4.25 ± 4.96 CTCs/2 mL, whereas only one cell was recognized as CTC in 1 of 15 healthy blood samples. The statistical analyses results demonstrated that both CTC positive rate and CTC counts were positive correlated with TNM stage (p < 0.001; p = 0.02, respectively). This microfluidic platform successfully demonstrated the clinical feasibility of CTC isolation and would hold great potential of clinical application in predicting and monitoring the prognosis of cancer patients.


Assuntos
Neoplasias da Mama/patologia , Separação Celular/instrumentação , Dispositivos Lab-On-A-Chip , Células Neoplásicas Circulantes/patologia , Linhagem Celular Tumoral , Humanos
10.
Nanotechnology ; 29(45): 455401, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30156189

RESUMO

Multi-dimensional nanomaterials possess a porous structure and plenty of active sites, so they have promising prospects in supercapacitor applications. As the typical pseudocapacitance materials, interlaced CoS nanoflakes and two-dimensional NiO nanosheets were assembled into multi-dimensional CoS/NiO architectures. The fabricated CoS/NiO nanostructures on nickel foam can directly serve as the supercapacitor electrodes. Such multi-dimensional CoS/NiO architectures exhibit the enhanced electrochemical performances in the light of the cyclic voltammetry curves and galvanostatic charging-discharging (GCD) tests. A multi-dimensional CoS/NiO electrode releases a high specific capacitance of 1620 F g-1 at 1.0 A g-1, which is distinctly higher than those of pristine CoS and NiO electrodes. The CoS/NiO//nitrogen-doped carbon nanoarrays (NC) asymmetric supercapacitor (ASC) can operate stably at 1.6 V. The GCD curves of the ASC at diverse current densities within the voltage window of 0-1.6 V exhibit reasonable symmetry. The CoS/NiO//NC ASC shows great long-term cycling performance, it has 93.5% capacity retention after 3000 cycles. Electrochemical analyses and detailed material characterizations are performed to reveal the mechanism for the enhanced performance of capacitance.

11.
Biomed Microdevices ; 19(4): 93, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29071494

RESUMO

Circulating tumor cells (CTCs) have been regarded as the major cause of metastasis, holding significant insights for tumor diagnosis and treatment. Although many efforts have been made to develop methods for CTC isolation and release in microfluidic system, it remains significant challenges to realize highly efficient isolation and gentle release of CTCs for further cellular and bio-molecular analyses. In this study, we demonstrate a novel method for CTC isolation and release using a simple wedge-shaped microfluidic chip embedding degradable znic oxide nanorods (ZnNRs) substrate. By integrating size-dependent filtration with degradable nanostructured substrate, the capture efficiencies over 87.5% were achieved for SKBR3, PC3, HepG2 and A549 cancer cells spiked in healthy blood sample with the flow rate of 100 µL min-1. By dissolving ZnNRs substrate with an extremely low concentration of phosphoric acid (12.5 mM), up to 85.6% of the captured SKBR3 cells were released after reverse injection with flow rate of 100 µL min-1 for 15 min, which exhibited around 73.6% cell viability within 1 h after release to around 93.9% after re-cultured for 3 days. It is conceivable that our microfluidic device has great potentials in carrying on cell-based biomedical studies and guiding individualized treatment in the future.


Assuntos
Dispositivos Lab-On-A-Chip , Nanotubos/química , Células Neoplásicas Circulantes/química , Óxido de Zinco/química , Células A549 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Técnicas Analíticas Microfluídicas
12.
J Synchrotron Radiat ; 22(4): 1091-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134816

RESUMO

For the first time, the three-dimensional (3D) ultrastructure of an intact rice pollen cell has been obtained using a full-field transmission hard X-ray microscope operated in Zernike phase contrast mode. After reconstruction and segmentation from a series of projection images, complete 3D structural information of a 35 µm rice pollen grain is presented at a resolution of ∼100 nm. The reconstruction allows a clear differentiation of various subcellular structures within the rice pollen grain, including aperture, lipid body, mitochondrion, nucleus and vacuole. Furthermore, quantitative information was obtained about the distribution of cytoplasmic organelles and the volume percentage of each kind of organelle. These results demonstrate that transmission X-ray microscopy can be quite powerful for non-destructive investigation of 3D structures of whole eukaryotic cells.


Assuntos
Imageamento Tridimensional , Microscopia/métodos , Oryza/ultraestrutura , Pólen/ultraestrutura , Organelas/ultraestrutura
13.
J Synchrotron Radiat ; 21(Pt 5): 1175-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25178009

RESUMO

Poly(lactic co-glycolic acid) (PLGA) is widely used in diverse fields, especially in delivering biologically active proteins and drugs. For these applications, the knowledge of morphology and microstructure of PLGA micro-porous microspheres is of great importance since they strongly influence the drug delivering efficiency. In this study, micro-porous PLGA microspheres loaded by bovine serum albumin are investigated by using a full-field Zernike phase contrast transmission hard X-ray microscope. From three-dimensional reconstructions and segmentations, fundamental microstructural parameters such as size, shape, distribution and volume ratio among pores and proteins inside PLGA microspheres were obtained. These parameters are useful to understand the relationship between the internal microstructure and drug encapsulation, as well as the drug release efficiency of PLGA microspheres. The presented results demonstrate the capability of hard X-ray nano-tomography to characterize porous microspheres loaded with proteins and drugs, and also open a way to analyse, optimize and design new PLGA microspheres for specific applications.


Assuntos
Ácido Láctico/química , Microesferas , Polímeros/química , Tomografia por Raios X/métodos , Sistemas de Liberação de Medicamentos , Imageamento Tridimensional , Tamanho da Partícula , Poliésteres , Porosidade , Albumina Sérica
14.
Tumour Biol ; 35(11): 11483-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25128065

RESUMO

Genistein possesses a wide variety of biological activities, and it is best known for its ability to inhibit cancer progression. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell cycle arrest and apoptosis as well as the antioxidant functions. Nuclear factor kappa-B (NF-κB) is a signaling pathway that controls transcriptional activation of genes important for the tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Inhibitors of NF-κB pathway have shown potential anti-tumor activities. However, it is not fully elucidated in colon cancer. In the present study, we demonstrated that genistein could induce apoptosis in human colon cancer LoVo and HT-29 cells through inhibiting NF-κB pathway, as well as downregulation of Bcl-2 and upregulation of Bax, thus providing basis for clinical application of genistein in colon cancer cases.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Genisteína/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Tumorais Cultivadas , Proteína X Associada a bcl-2/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-38655785

RESUMO

Ca-substituted Ba1-xCaxMg2Al6Si9O30 ceramics were prepared to explore the relationships among their crystal structural parameters, phase compositions, dielectric properties, and coefficients of thermal expansion and applications in C-band antenna. The maximum solubility of Ba1-xCaxMg2Al6Si9O30 was located at x = 0.25, and Ba1-xCaxMg2Al6Si9O30 ceramics (0 ≤ x ≤ 0.25) crystallized in the space group P6/mcc. In Ba1-xCaxMg2Al6Si9O30 single-phase ceramics, εr was dominated by ionic polarizability and "rattling effects" of Ba2+ and Al(2)3+; Q × f was controlled by the roundness of [Si4Al2O18] inner rings and total lattice energy; and τf was affected by the bond valence of Si/Al(1)-O(1). Notably, the low average coefficients of thermal expansion (2.668 ppm/°C) at -150 °C ≤ T ≤ 850 °C and near-zero coefficients of thermal expansion (1.254 ppm/°C) at -150 °C ≤ T ≤ 260 °C were achieved for the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic. Optimum microwave and terahertz dielectric properties were obtained for the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic with εr = 5.80, Q × f = 31,174 at 13.99 GHz, τf = -7.10 ppm/°C, and εr = 5.71-5.85 at 0.2 THz ≤ f ≤ 1.0 THz. Also, the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic substrate had been designed as a C-band patch antenna with a high simulated radiation efficiency (87.76%) and gain (6.30 dBi) at 7.70 GHz (|S11| = -38.41 dB).

16.
Opt Express ; 21(17): 19675-80, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24105514

RESUMO

In this manuscript, we demonstrate numerically classical analogy of electromagnetically induced transparency (EIT) with a windmill type metamaterial consisting of two dumbbell dielectric resonator. With proper external excitation, dielectric resonators serve as EIT bright and dark elements via electric and magnetic Mie resonances, respectively. Rigorous numerical analyses reveal that dielectric metamaterial exhibits sharp transparency peak characterized by large group index due to the destructive interference between EIT bright and dark resonators. Furthermore, such EIT transmission behavior keeps stable property with respect to polarization and incidence angles.

17.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176249

RESUMO

In this paper, a radio frequency identification (RFID) tag is designed and fabricated based on highly electrical and thermal conductive graphene films. The tag operates in the ultrahigh-frequency (UHF) band, which is suitable for high-power microwave environments of at least 800 W. We designed the protection structure to avoid charge accumulation at the antenna's critical positions. In the initial state, the read range of the anti-high-power microwave graphene film tag (AMGFT) is 10.43 m at 915 MHz. During the microwave heating experiment, the aluminum tag causes a visible electric spark phenomenon, which ablates the aluminum tag and its attachment, resulting in tag failure and serious safety issues. In contrast, the AMGFT is intact, with its entire read range curve growing and returning to its initial position as its temperature steadily decreases back to room temperature. In addition, the proposed dual-frequency tag further confirms the anti-high-power microwave performance of graphene film tags and provides a multi-scenario interactive application.

18.
Bioeng Transl Med ; 8(6): e10494, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023711

RESUMO

Weak absorption contrast in biological tissues has hindered x-ray computed tomography from accessing biological structures. Recently, grating-based imaging has emerged as a promising solution to biological low-contrast imaging, providing complementary and previously unavailable structural information of the specimen. Although it has been successfully applied to work with conventional x-ray sources, grating-based imaging is time-consuming and requires a sophisticated experimental setup. In this work, we demonstrate that a deep convolutional neural network trained with a generative adversarial network can directly convert x-ray absorption images into differential phase-contrast and dark-field images that are comparable to those obtained at both a synchrotron beamline and a laboratory facility. By smearing back all of the virtual projections, high-quality tomographic images of biological test specimens deliver the differential phase-contrast- and dark-field-like contrast and quantitative information, broadening the horizon of x-ray image contrast generation.

19.
Front Genet ; 14: 1293393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145212

RESUMO

The obstructed coronary artery undergoes a series of pathological changes due to ischemic-hypoxic shocks during acute myocardial infarction (AMI). However, the altered DNA methylation levels in endothelial cells under these conditions and their implication for the etiopathology of AMI have not been investigated in detail. This study aimed to explore the relationship between DNA methylation and pathologically altered gene expression profile in human umbilical vein endothelial cells (HUVECs) subjected to oxygen-glucose deprivation (OGD), and its clinical implications in AMI patients. The Illumina Infinium MethylationEPIC BeadChip assay was used to explore the genome-wide DNA methylation profile using the Novaseq6000 platform for mRNA sequencing in 3 pairs of HUVEC-OGD and control samples. GO and KEGG pathway enrichment analyses, as well as correlation, causal inference test (CIT), and protein-protein interaction (PPI) analyses identified 22 hub genes that were validated by MethylTarget sequencing as well as qRT-PCR. ELISA was used to detect four target molecules associated with the progression of AMI. A total of 2,524 differentially expressed genes (DEGs) and 22,148 differentially methylated positions (DMPs) corresponding to 6,642 differentially methylated genes (DMGs) were screened (|Δß|>0.1 and detection p < 0.05). After GO, KEGG, correlation, CIT, and PPI analyses, 441 genes were filtered. qRT-PCR confirmed the overexpression of VEGFA, CCL2, TSP-1, SQSTM1, BCL2L11, and TIMP3 genes, and downregulation of MYC, CD44, BDNF, GNAQ, RUNX1, ETS1, NGFR, MME, SEMA6A, GNAI1, IFIT1, and MEIS1. DNA fragments BDNF_1_ (r = 0.931, p < 0.0001) and SQSTM1_2_NEW (r = 0.758, p = 0.0043) were positively correlated with the expressions of corresponding genes, and MYC_1_ (r = -0.8245, p = 0.001) was negatively correlated. Furthermore, ELISA confirmed TNFSF10 and BDNF were elevated in the peripheral blood of AMI patients (p = 0.0284 and p = 0.0142, respectively). Combined sequencing from in vitro cellular assays with clinical samples, aiming to establish the potential causal chain of the causal factor (DNA methylation) - mediator (mRNA)-cell outcome (endothelial cell ischemic-hypoxic injury)-clinical outcome (AMI), our study identified promising OGD-specific genes, which provided a solid basis for screening fundamental diagnostic and prognostic biomarkers of coronary endothelial cell injury of AMI. Moreover, it furnished the first evidence that during ischemia and hypoxia, the expression of BNDF was regulated by DNA methylation in endothelial cells and elevated in peripheral blood.

20.
Mol Biol Rep ; 39(6): 6555-61, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22311015

RESUMO

Recent genome-wide association studies have showed that common variant (rs9939609) in fat mass and obesity associated (FTO) gene was significantly associated with type 2 diabetes through an effect on human body mass index/obesity. Further studies have suggested that this variant was also involved in the development of metabolic syndrome (MetS). However, the results have been inconsistent. In this study, we performed a meta-analysis to clarify the association between rs9939609 polymorphism and the risk of MetS. Published literature from PubMed, EMBASE and other databases were searched. All studies assessing the association between rs9939609 polymorphism and the risk of MetS were identified. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed-effects model. Thirteen studies (8,370 cases and 23,156 controls) using NCEP ATPIII criteria for MetS were pooled with a meta-analysis. The overall result showed that there was a statistically significant association between rs9939609 polymorphism and MetS risk (OR = 1.11, 95% CI = 1.06-1.17). Subgroup analysis based on ethnicity showed that effect size was only statistically significant in Europeans (OR = 1.11, 95% CI = 1.05-1.16). Eight studies (1,256 cases and 2,551 controls) using IDF criteria for MetS were pooled with a meta-analysis. The overall analysis suggested that rs9939609 polymorphism was significantly associated with MetS risk (OR = 1.32, 95% CI = 1.13-1.54). Subgroup analysis stratified by ethnicity suggested that effect size was only statistically significant in Asians (OR = 1.33, 95% CI = 1.10-1.61). Our results suggested that FTO rs9939609 polymorphism was significantly associated with the increased risk of MetS in European and Asian populations. Mechanistic investigation is also needed to clarify the effect of FTO gene in the predisposition to MetS.


Assuntos
Síndrome Metabólica/genética , Polimorfismo Genético , Proteínas/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Estudos de Casos e Controles , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Razão de Chances , Fatores de Risco , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa