RESUMO
The seawater electrolysis to produce hydrogen is a significant topic on alleviating the energy crisis. Here, the Fe, Nb-Ni3S2 catalyst is prepared by metal-doping strategy, and it shows high oxygen evolution reaction (OER) activity in alkaline medium, and only needs 1.491 V to deliver a current density of 100 mA cm-2 in simulated seawater. Using Fe, Nb-Ni3S2 as a bifunctional catalyst, the two-electrode electrolyzer only requires a voltage of 1.751 V (without impedance compensation) to drive the current density of 50 mA cm-2, and can run over 150 h stably in the simulated seawater. Importantly, In situ Raman test demonstrates that the outstanding performance of Fe, Nb-Ni3S2 in simulated seawater is ascribed to the in situ formed sulfate protective layer induced by Nb doping, which can effectively inhibit the corrosion of chloride ion, while the protective layer is absent for Fe-Ni3S2. The stable operation of simulated seawater electrolysis under industrial current density further confirms the stability improvement mechanism of forming protective layer. In short, this study provides a new strategy of using Nb dopants inducing the formation of protective layer to enhance the stability of seawater electrolysis.
RESUMO
BACKGROUND: The COVID-19 pandemic has significantly increased the risk of burnout among frontline nurses. However, the prevalence of burnout and its associated factors in the post-pandemic era remain unclear. This research aims to investigate burnout prevalence among frontline nurses in the post-pandemic period and pinpoint associated determinants in China. METHODS: From April to July 2023, a cross-sectional study was carried out across multiple centers, focusing on frontline nurses who had been actively involved in the COVID-19 pandemic. The data collection was done via an online platform. The Maslach Burnout Inventory-Human Services Survey was utilized to evaluate symptoms of burnout. A multivariable logistic regression analysis was used to pinpoint factors associated with burnout. RESULTS: Of the 2210 frontline nurses who participated, 75.38% scored over the cut-off for burnout. Multivariable logistic regression revealed that factors like being female [odds ratio (OR) = 0.41, 95%CI = 0.29-0.58] and exercising 1-2 times weekly[OR = 0.53, 95%CI = 0.42-0.67] were protective factors against burnout. Conversely, having 10 or more night shifts per month[OR = 1.99, 95%CI = 1.39-2.84], holding a master's degree or higher[OR = 2.86, 95% CI = 1.59-5.15], poor health status[OR = 2.43, 95% CI = 1.93-3.08] and [OR = 2.82, 95%CI = 1.80-4.43], under virus infection[OR = 7.12, 95%CI = 2.10-24.17], and elevated work-related stress[OR = 1.53, 95% CI = 1.17-2.00] were all associated with an elevated risk of burnout. CONCLUSION: Our findings indicate that post-pandemic burnout among frontline nurses is influenced by several factors, including gender, monthly night shift frequency, academic qualifications, weekly exercise frequency, health condition, and viral infection history. These insights can inform interventions aimed at safeguarding the mental well-being of frontline nurses in the post-pandemic period.
Assuntos
COVID-19 , Pandemias , Testes Psicológicos , Autorrelato , Feminino , Humanos , Masculino , Estudos Transversais , COVID-19/epidemiologia , Esgotamento Psicológico/epidemiologiaRESUMO
Covalent organic frameworks (COFs) have recently shown great potential for photocatalytic hydrogen production. Currently almost all reports are focused on two-dimensional (2D) COFs, while the 3D counterparts are rarely explored due to their non-conjugated frameworks derived from the sp3 carbon based tetrahedral building blocks. Here, we rationally designed and synthesized a series of fully conjugated 3D COFs by using the saddle-shaped cyclooctatetrathiophene derivative as the building block. Through molecular engineering strategies, we thoroughly discussed the influences of key factors including the donor-acceptor structure, hydrophilicity, specific surface areas, as well as the conjugated/non-conjugated structures on their photocatalytic hydrogen evolution properties. The as-synthesized fully conjugated 3D COFs could generate the hydrogen up to 40.36â mmol h-1 g-1. This is the first report on intrinsic metal-free 3D COFs in photocatalytic hydrogen evolution application. Our work provides insight on the structure design of 3D COFs for highly-efficient photocatalysis, and also reveals that the semiconducting fully conjugated 3D COFs could be a useful platform in clear energy-related fields.
RESUMO
Rigid three-dimensional (3D) polycyclic propellanes have garnered interest due to their unique conformational spaces, which display great potential use in selectivity, separation and as models to study through-space electronic interactions. Herein we report the synthesis of a novel rigid propellane, trinaphtho[3.3.3]propellane triimide, which comprises three imide groups embedded on a trinaphtho[3.3.3]propellane. This propellane triimide exhibits large bathochromic shift, amplified molar absorptivity, enhanced fluorescence, and lower reduction potential when compared to the subunits. Computational and experimental studies reveal that the effective through-space π-orbitals interacting (homoconjugation) occurs between the subunits. Single-crystal XRD analysis reveals that the propellane triimide has a highly quasi-D3h symmetric skeleton and readily crystallizes into different superstructures by changing alkyl chains at the imide positions. In particular, the porous 3D superstructure with S-shaped channels is promising for taking up ethane (C2H6) with very good selectivity over ethylene (C2H4), which can purify C2H4 from C2H6/C2H4 in a single separation step. This work showcases a new class of rare 3D polycyclic propellane with intriguing electronic and supramolecular properties.
RESUMO
The existing electronic waste (e-waste) and leaching solutions generated by industries accumulate significant amounts of gold (Au), even in excess of those in natural minerals. Therefore, the recycling of Au is extremely significant for the potential sustainability of chemical industry. By designing ionic covalent organic frameworks (COFs), here we synthesize a series of Ionic-COF-X (X=Cl-, Br-, AcO-, and SO4 2-) by anion regulation strategy and further explore their adsorption performance towards Au recovery. All these ionic COFs exhibit ultrahigh gold adsorption efficiency and excellent regeneration. Moreover, anion regulation could indeed affect the Au capture performance. In particular, when Cl- ions serve as counter ions, the Au capacity of Ionic-COF-Cl could reach 1270.8â mg g-1. Moreover, in the actual CPU leaching solution test, the selectivity of Ionic-COF-Cl towards Au3+ ion hits 39000 and 4600 times higher than that of Cu2+ and Ni2+ ions, respectively, suggesting that the Ionic-COF-Cl is a promising material for highly selective recovering gold from actual e-waste. DFT calculations further reveal that counter ions can regulate the adsorption affinity of ionic COF framework toward Au. In short, this work provides a useful anion regulation strategy to design ionic COFs as a promising platform for gold selective recovery from actual e-waste.
RESUMO
High energy density lithium-ion batteries (LIBs) adopting high-nickel layered oxide cathodes and silicon-based composite anodes always suffer from unsatisfied cycle life and poor safety performance, especially at elevated temperatures. Electrode /electrolyte interphase regulation by functional additives is one of the most economic and efficacious strategies to overcome this shortcoming. Herein, cyano-groups (-CN) are introduced into lithium fluorinated phosphate to synthesize a novel multifunctional additive of lithium tetrafluoro (1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) phosphate (LiTFTCP), which endows high nickel LiNi0.8 Co0.1 Mn0.1 O2 /SiOx -graphite composite full cell with an ultrahigh cycle life and superior safety characteristics, by adding only 0.5â wt % LiTFTCP into a LiPF6 -carbonate baseline electrolyte. It is revealed that LiTFTCP additive effectively suppresses the HF generation and facilitates the formation of a robust and heat-resistant cyano-enriched CEI layer as well as a stable LiF-enriched SEI layer. The favorable SEI/CEI layers greatly lessen the electrode degradation, electrolyte consumption, thermal-induced gassing and total heat-releasing. This work illuminates the importance of additive molecular engineering and interphase regulation in simultaneously promoting the cycling and thermal safety of LIBs with high-nickel NCMxyz cathode and silicon-based composite anode.
RESUMO
Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly-fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer-organic and inner-inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB- anions tend to integrate into lithium ion solvation structure to form a favorable fast-ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9â mAh cm-2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260â cycles at 60 °C and 4.45â V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions.
RESUMO
The exploration of high-quality and efficient electrocatalysts is crucial for the advancement of clean energy utilization and the development of energy conversion technologies. Recently, high-entropy alloys (HEA) have been actively explored as viable catalysts for water electrolysis due to their unique performance such as wide scope for compositional adjustments, excellent catalytic activity, and outstanding stability. However, the mechanism of synergistic oxygen evolution by HEA electrocatalysts at multiple sites has not been systematically and clearly demystified. Herein, in this paper, Pt is combined with inexpensive metals Ni, Cu, Fe, and Co to form a stable HEA structure. The synergistic catalytic mechanism of the PtNiFeCoCu HEA in the oxygen evolution reaction (OER) has been investigated, and the structure has been demonstrated to exhibit excellent hydrogen evolution reaction (HER) activity. The results suggest that the PtNiFeCoCu HEA catalyst achieved a lower overpotential of 0.44 V in the acidic OER, demonstrating that the PtNiFeCoCu HEA is a bifunctional electrocatalyst. In addition, oxygen intermediates are synergistically adsorbed on the surface of high-entropy alloys through multimetallic sites, which breaks the limitation of limited active sites. Further calculations indicated that the favorable OER activity of the catalyst originated from the strong associative coupling of the d orbitals of the synergistic metal sites to the 2p orbitals of the oxygen intermediates with enhanced synergistic effects. This work further elucidates the multisite synergistic catalysis of the PtNiFeCoCu HEA, providing a unique perspective to uncover the source of the high catalytic performance of HEA electrocatalysts.
RESUMO
Sensing analysis is significantly important for human health and environmental safety, and has gained increasing concern. As a promising material, porous organic polymers (POPs) have drawn widespread attention due to the availability of plentiful building blocks and their tunable structures, porosity and functions. Moreover, the permanent porous nature could provide a micro-environment to interact with guest molecules, rendering POPs attractive for application in the sensing field. In this review, we give a comprehensive overview of POPs as a platform for sensing applications. POP-based sensors are mainly divided into five categories, including fluorescence turn-on sensors, fluorescence turn-off sensors, ratiometric fluorescent sensors, colorimetric sensors and chemiresistive sensors, and their various sensing applications in detecting explosives, metal ions, anions, small molecules, biological molecules, pH changes, enantiomers, latent fingerprints and thermosensation are summarized. The different structure-based POPs and their corresponding synthetic strategies as well as the related sensing mechanisms mainly including energy transfer, donor-acceptor electron transfer, absorption competition quenching and inner filter effect are also involved in the discussion. Finally, the future outlook and perspective are addressed briefly.
Assuntos
Metais , Polímeros , Colorimetria , Humanos , Íons , PorosidadeRESUMO
The application of three-dimensional (3D) covalent organic frameworks (COFs) in renewable energy fields is greatly limited due to their non-conjugated skeletons. Here, we design and successfully synthesize a thiophene-enriched fully conjugated 3D COF (BUCT-COF-11) through an all-thiophene-linked saddle-shaped building block (COThTh-CHO). The BUCT-COF-11 exhibits excellent semiconducting property with intrinsic metal-free oxygen reduction reaction (ORR) activity. Using the COF as cathode catalyst, the assembled anion-exchange membrane fuel cells (AEMFCs) exhibited a high peak power density up to 493â mW cm-2 . DFT calculations reveal that thiophene introduction in the COF not only improves the conductivity but also optimizes the electronic structure of the sample, which therefore boosts the ORR performance. This is the first report on the application of COFs as metal-free catalysts in fuel cells, demonstrating the great potential of fully conjugated 3D COFs as promising semiconductors in energy fields.
RESUMO
The semiconducting properties and applications of three dimensional (3D) covalent organic frameworks (COFs) are greatly hampered because of their long-ranged non-conjugated skeletons and relatively unstable linkages. Here, a robust imidazole-linked fully conjugated 3D covalent organic framework (BUCT-COF-7) is synthesized through the one-pot multicomponent Debus-Radziszewski reaction of the saddle-shaped aldehyde-substituted cyclooctatetrathiophene, pyrene-4,5,9,10-tetraone, and ammonium acetate. The semiconducting BUCT-COF-7, as a metal-free catalyst, shows excellent two electron oxygen reduction reaction (ORR) activity in alkaline medium with high hydrogen peroxide (H2 O2 ) selectivity of 83.4 %. When the BUCT-COF-7 as cathode catalyst is assembled into the electrolyzer, the devices showed high electrochemical production rate of H2 O2 up to 326.9â mmol g-1 h-1 . The accumulative amount of H2 O2 could totally degrade the dye methylene blue via Fenton reaction for wastewater treatment. This is the first report about intrinsic 3D COFs for efficient electrochemical synthesis of H2 O2 , revealing the promising applications of fully conjugated 3D COFs in the environment-related field.
RESUMO
To achieve practical application of fuel cell, it is vital to develop highly efficient and durable Pt-free catalysts. Herein, we prepare atomically dispersed ZnNC catalysts with Zn-Pyrrolic-N4 moieties and abundant mesoporous structure. The ZnNC-based anion-exchange membrane fuel cell (AEMFC) presents an ultrahigh peak power density of 1.63 and 0.83â W cm-2 in H2 -O2 and H2 -air (CO2 -free), and also exhibits long-term stability with more than 120 and 100â h for H2 -air (CO2 -free) and H2 -O2 , respectively. Density functional calculations further unveil that the Zn-Pyrrolic-N4 structure is the origin of high activity of as-synthesized ZnNC catalyst, while the Zn-Pyridinic-N4 moiety is inactive for oxygen reduction reaction (ORR), which successfully explain the puzzle why most Zn-metal-organic framework -derived ZnNC catalysts in previous reports did not present good ORR activity because of their Zn-Pyridinic-N4 moieties. This work offers a new route for speeding up development of AEMFCs.
RESUMO
A first example of an sp2 carbon-conjugated three-dimensional (3D) covalent organic framework (COF) (BUCT-COF-4) is synthesized via the Knoevenagel condensation of the saddle-shaped aldehyde-substituted cyclooctatetrathiophene and 1,4-phenylenediacetonitrile. Ascribed to the extended π-conjugation and long-range ordered structures, BUCT-COF-4 displays high Hall electron mobility of 1.97 cm2 V-1 s-1 at room temperature. After it is doped with iodine, the material not only exhibits an enhanced electron mobility up to 2.62 cm2 V-1 s-1 in ambient air but also presents an unexpected metal-free ferromagnetic phase transition arising from the formation of aligned spins unidirectional across the whole sp2 carbon-conjugated 3D framework. This is the first report of a ferromagnetic phenomenon in 3D COF materials, which would broaden promising applications and open a new frontier in COF materials.
RESUMO
Five libraries of natural and synthetic phenolic acids containing five AB3, ten constitutional isomeric AB2, one AB4, and one AB5 were previously synthesized and reported by our laboratory in 5 to 11 steps. They were employed to construct seven libraries of self-assembling dendrons, by divergent generational, deconstruction, and combined approaches, enabling the discovery of a diversity of supramolecular assemblies including Frank-Kasper phases, soft quasicrystals, and complex helical organizations, some undergoing deracemization in the crystal state. However, higher substitution patterns within a single dendron were not accessible. Here we report three libraries consisting of 30 symmetric and nonsymmetric constitutional isomeric phenolic acids with unprecedented sequenced patterns, including two AB2, three AB3, eight AB4, five AB5, six AB6, three AB7, two AB8, and one AB9 synthesized by accelerated modular-orthogonal Ni-catalyzed borylation and cross-coupling. A single etherification step with 4-(n-dodecyloxy)benzyl chloride transformed all these phenolic acids, of interest also for other applications, into self-assembling dendrons. Despite this synthetic simplicity, they led to a diversity of unprecedented self-organizing principles: lamellar structures of interest for biological membrane mimics, helical columnar assemblies from rigid-solid angle dendrons forming Tobacco Mosaic Virus-like assemblies, columnar organizations from adaptable-solid angle dendrons forming disordered micellar-like nonhelical columns, columns from supramolecular spheres, five body-centered cubic phases displaying supramolecular orientational memory, rarely encountered in previous libraries forming predominantly Frank-Kasper phases, and two Frank-Kasper phases. Lessons from these self-organizing principles, discovered within a single generation of self-assembling dendrons, may help elaborate design principles for complex helical and nonhelical organizations of synthetic and biological matter.
RESUMO
Currently, most organic semiconducting materials (OSMs) are π-conjugated structures in one or two dimension (2D), where the lack of layer-layer π-conjugation connection greatly blocks their electron delocalization and transport. The 3D fully conjugated materials could solve this issue because they can provide efficient charge-transport pathways throughout the whole 3D skeleton, in which the suitable 3D building block is the key to the development of fully conjugated 3D OSMs. Cyclooctatetraene (COT) and its derivatives are good candidates due to their π-conjugation with 3D saddle-shaped architecture. In this Concept, we discuss the key features of saddle-shaped COT-based derivatives and their synthetic strategy, then we present the current development of using the COT derivatives as building blocks to construct the 3D fully conjugated organic small compound- and polymer-based OSMs. The properties and perspectives of these OSMs in photovoltaics, electro-catalysis and electrical conductivities are also discussed. These recent advances in the developing 3D fully conjugated materials could potentially open up a new frontier in the design of OSMs.
RESUMO
A facile wet-chemical method was adopted to synthesize g-C3N4/MnO2/GO heterojunction photocatalyst for visible-light photodegradation of tetracycline hydrochloride (TC). The addition of MnO2 and GO increased the absorption of visible light and the specific surface area of the photocatalyst. The results of photoluminescence, electrochemical impedance spectroscopy, and photocurrent response indicated that CMG-10 had the lowest electron-hole recombination probability, which was beneficial for the photocatalytic reaction. The ternary photocatalyst exhibited enhanced photoelectric performance and superior photocatalytic activity with 91.4% removal of TC (10 mg/L) under a mere 60 min visible light illumination, which showed enhanced photocatalytic degradation when compared with binary (CM, 77.95%; CG, 78.83%) and single (C3N4, 55.5%; MnO2, 36.41%) photocatalysts. A pH of 6 was optimal for the CMG-10 photocatalytic degradation of TC, and the optimal photocatalyst dosage was 0.5 g/L. Common coexisting ions influenced the removal of TC by influencing the production of active species. The catalyst is stable and reusable with only a 10% reduction in removal efficiency after four cycles. According to the active species analysis, the Z-scheme mechanism was a charge transfer behavior in the composite photocatalyst, which could prevent the recombination of photogenerated carriers. This study presents a photocatalytic approach to the effective removal of TC from water bodies, which provides practical implications to advance the use of photocatalytic technology in the restoration of aqueous environmental pollution.
Assuntos
Compostos de Manganês , Tetraciclina , Luz , Óxidos , FotóliseRESUMO
Satellites have many high-, medium-, and low-frequency micro vibration sources that lead to the optical axis jitter of the optical load and subsequently degrade the remote sensing image quality. To address this problem, this paper developed an image motion detection and restoration method based on an inertial reference laser, and describe edits principle and key components. To verify the feasibility and performance of this method, this paper also built an image motion measurement and restoration system based on an inertial reference laser, which comprised a camera (including the inertial reference laser unit and a Hartmann wavefront sensor), an integrating sphere, a simulated image target, a parallel light pope, a vibration isolation platform, a vibration generator, and a 6 degrees of freedom platform. The image restoration principle was also described. The background noise in the experiment environment was measured, and an image motion measurement accuracy experiment was performed. Verification experiments of image restoration were also conducted under various working conditions. The experiment results showed that the error of image motion detection based on the inertial reference laser was less than 0.12 pixels (root mean square). By using image motion data to improve image quality, the modulation transfer function (MTF) of the restored image was increased to 1.61-1.88 times that of the original image MTF. The image motion data could be used as feedback to the fast steering mirror to compensate for the satellite jitter in real time and to directly obtain high-quality images.
RESUMO
Heavy metals and metalloids (HMMs) pose a serious threat to both environmental and human health. The unique characteristics and environmental toxicity of HMMs make their removal from the environment a major challenge. Constructed wetlands (CWs) are increasingly being used as an eco-friendly system for the removal of HMMs from aqueous environments. In this review, bibliometric analysis was performed using the Scopus database using VOSviewer software to assess the developing use of CWs in recent years. Heavy metal and metalloid (HMM) removal pathways were reviewed (such as precipitation, co-precipitation, adsorption and ion exchange, plant action and microbial action) along with the impact of key factors (pH, chemical oxygen demand, dissolved oxygen, HMM concentration, and temperature). This review aimed to establish the connections between published results, to help effectively optimize the use of CWs for the removal of HMMs and identify the most critical factors for their effective removal. Important aspects that require further research include assessing the synergistic toxicity between different pollutants and combining the use of CWs with other technologies to optimize pollutant remediation efficiency.
Assuntos
Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Metaloides/química , Metais Pesados/química , Bibliometria , Recuperação e Remediação Ambiental/instrumentação , Recuperação e Remediação Ambiental/tendências , Áreas AlagadasRESUMO
Although π-conjugated two dimensional (2D) covalent organic frameworks (COFs) have been extensively reported, developing fully π-conjugated 3D COFs is still an extremely difficult problem due to the lack of fully π-conjugated 3D linkers. We synthesize a fully conjugated 3D COF (BUCT-COF-1) by designing a saddle-shaped building block of aldehyde-substituted cyclooctatetrathiophene (COThP)-CHO. As a consequence of the fully conjugated 3D network, BUCT-COF-1 demonstrates ultrahigh Hall electron mobility up to ≈3.0â cm2 V-1 s-1 at room temperature, which is one order of magnitude higher than the current π-conjugated 2D COFs. Temperature-dependent conductivity measurements reveal that the charge carriers in BUCT- COF-1 exhibit the band-like transport mechanism, which is entirely different from the hopping transport phenomena observed in common organic materials. The findings indicate that fully conjugated 3D COFs can achieve electron delocalization and charge-transport pathways within the whole 3D skeleton, which may open up a new frontier in the design of organic semiconducting materials.
RESUMO
Heterasumanenes 4-6 containing chalcogen (S, Se, and Te) and phosphorus atoms have been synthesized in a one-pot reaction from trichalcogenasumanenes 1-3 by replacing one chalcogen atom with a P=S unit. The P=S unit makes 4-6 almost planar and shrinks the HOMO-LUMO gap as compared to 1-3. The bonding between Ag+ and S atom on P=S brings about a distinct change to the optical properties of 4-6; 4 in particular shows a selective fluorescence response toward Ag+ with LOD of 0.21â µm. Compounds 4-6 form complexes with AgNO3 to be (4)2 â AgNO3 , (5)2 â AgNO3 , and (6)2 â (AgNO3 )3 . In complexes, the coordination between Ag+ and P=S is observed, which leads to shrinkage of C-P and C-X (X=S, Se, Te) bond lengths. As a result, 4, 5, and 6 are all bowl-shaped in complexes with bowl-depths reaching to 0.66â Å, 0.42â Å, and 0.40â Å, respectively. There are Ag-Te dative bonds between Ag+ and Te atom on telluorophene in (6)2 â (AgNO3 )3 .