Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 24(1): e202200565, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36124812

RESUMO

Plasmon-excited hot carriers have drawn great attention for driving various chemical reactions, but the short lifetimes of hot carriers seriously restrict the performance of plasmonic photocatalysis. Constructing plasmonic metal/metal-organic framework (MOF) heterostructures has been proved as an effective strategy to extend the lifetimes of hot carriers. Due to the high molecular tunability of MOFs, the MOF substrate in plasmonic metal/MOF heterostructures is able to capture hot electrons on the conduction band of MOF and hot holes on its valence band, and thus offers an ideal platform to separately study the detailed mechanism of hot electron and hole transfer processes. This review focuses on a molecular-level understanding of both hot-electron and hot-hole transfer at plasmonic metal/MOF interfaces. The enhanced stability and photocatalytic performance by introducing MOF substrates are discussed for plasmonic metal/MOF heterostructures. Additionally, typical characterization technologies are also proposed as powerful tools for tracking hot carrier transfer process.


Assuntos
Estruturas Metalorgânicas , Elétrons
2.
Chemistry ; 28(50): e202200919, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35674346

RESUMO

Constructing heterostructures have been demonstrated as an ideal strategy for boosting charge separation on plasmonic photocatalysts, but the detailed interface charge transfer mechanism remains elusive. Herein, that authors fabricate plasmonic Au and metal-organic frameworks (MOFs, NH2 -MIL-125 and MIL-125 used in this work) heterostructures and explore the interface charge transfer mechanism by in situ electron paramagnetic resonance (EPR) spectroscopy and electrochemical measurements. The plasmon-excited hot electrons on Au can transfer across the Au/MOF interface and be captured by the coordinatively unsaturated sites of secondary building units (Ti8 O8 (OH)4 cluster) of the MOF structure, and the plasmon-excited hot holes on Au tend to transfer to and be trapped at the functionalized organic ligand (1,4-benzenedicarboxylate-NH2 ). The spatially separated hot electrons and holes exhibit boosted the photocatalytic activity for chromium (VI) reduction and selective benzyl alcohol oxidation. This work illustrates the advantage of the versatile functionalization of MOF structures enabling molecular-level manipulation of interface charge transfer on plasmonic photocatalysts.

3.
J Am Chem Soc ; 141(45): 17995-17999, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31647653

RESUMO

Hydrogen is regarded as an attractive alternative energy carrier due to its high gravimetric energy density and only water production upon combustion. However, due to its low volumetric energy density, there are still some challenges in practical hydrogen storage and transportation. In the past decade, using chemical bonds of liquid organic molecules as hydrogen carriers to generate hydrogen in situ provided a feasible method to potentially solve this problem. Research efforts on liquid organic hydrogen carriers (LOHCs) seek practical carrier systems and advanced catalytic materials that have the potential to reduce costs, increase reaction rate, and provide a more efficient catalytic hydrogen generation/storage process. In this work, we used methanol as a hydrogen carrier to release hydrogen in situ with the single-site Pt1/CeO2 catalyst. Moreover, in this reaction, compared with traditional nanoparticle catalysts, the single site catalyst displays excellent hydrogen generation efficiency, 40 times higher than 2.5 nm Pt/CeO2 sample, and 800 times higher compared to 7.0 nm Pt/CeO2 sample. This in-depth study highlights the benefits of single-site catalysts and paves the way for further rational design of highly efficient catalysts for sustainable energy storage applications.

4.
Nanoscale Res Lett ; 11(1): 191, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27071678

RESUMO

Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa