Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38715408

RESUMO

Speech comprehension in noise depends on complex interactions between peripheral sensory and central cognitive systems. Despite having normal peripheral hearing, older adults show difficulties in speech comprehension. It remains unclear whether the brain's neural responses could indicate aging. The current study examined whether individual brain activation during speech perception in different listening environments could predict age. We applied functional near-infrared spectroscopy to 93 normal-hearing human adults (20 to 70 years old) during a sentence listening task, which contained a quiet condition and 4 different signal-to-noise ratios (SNR = 10, 5, 0, -5 dB) noisy conditions. A data-driven approach, the region-based brain-age predictive modeling was adopted. We observed a significant behavioral decrease with age under the 4 noisy conditions, but not under the quiet condition. Brain activations in SNR = 10 dB listening condition could successfully predict individual's age. Moreover, we found that the bilateral visual sensory cortex, left dorsal speech pathway, left cerebellum, right temporal-parietal junction area, right homolog Wernicke's area, and right middle temporal gyrus contributed most to prediction performance. These results demonstrate that the activations of regions about sensory-motor mapping of sound, especially in noisy conditions, could be sensitive measures for age prediction than external behavior measures.


Assuntos
Envelhecimento , Encéfalo , Compreensão , Ruído , Espectroscopia de Luz Próxima ao Infravermelho , Percepção da Fala , Humanos , Adulto , Percepção da Fala/fisiologia , Masculino , Feminino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Pessoa de Meia-Idade , Adulto Jovem , Idoso , Compreensão/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Envelhecimento/fisiologia , Mapeamento Encefálico/métodos , Estimulação Acústica/métodos
2.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38163443

RESUMO

The onset of hearing loss can lead to altered brain structure and functions. However, hearing restoration may also result in distinct cortical reorganization. A differential pattern of functional remodeling was observed between post- and prelingual cochlear implant users, but it remains unclear how these speech processing networks are reorganized after cochlear implantation. To explore the impact of language acquisition and hearing restoration on speech perception in cochlear implant users, we conducted assessments of brain activation, functional connectivity, and graph theory-based analysis using functional near-infrared spectroscopy. We examined the effects of speech-in-noise stimuli on three groups: postlingual cochlear implant users (n = 12), prelingual cochlear implant users (n = 10), and age-matched individuals with hearing controls (HC) (n = 22). The activation of auditory-related areas in cochlear implant users showed a lower response compared with the HC group. Wernicke's area and Broca's area demonstrated differences network attributes in speech processing networks in post- and prelingual cochlear implant users. In addition, cochlear implant users maintain a high efficiency of the speech processing network to process speech information. Taken together, our results characterize the speech processing networks, in varying noise environments, in post- and prelingual cochlear implant users and provide new insights for theories of how implantation modes impact remodeling of the speech processing functional networks.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Percepção da Fala , Humanos , Fala , Surdez/cirurgia , Audição , Percepção da Fala/fisiologia
3.
Hum Brain Mapp ; 45(1): e26577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224542

RESUMO

Healthy aging leads to complex changes in the functional network of speech processing in a noisy environment. The dual-route neural architecture has been applied to the study of speech processing. Although evidence suggests that senescent increases activity in the brain regions across the dorsal and ventral stream regions to offset reduced periphery, the regulatory mechanism of dual-route functional networks underlying such compensation remains largely unknown. Here, by utilizing functional near-infrared spectroscopy (fNIRS), we investigated the compensatory mechanism of the dual-route functional connectivity, and its relationship with healthy aging by using a speech perception task at varying signal-to-noise ratios (SNR) in healthy individuals (young adults, middle-aged adults, and older adults). Results showed that the speech perception scores showed a significant age-related decrease with the reduction of the SNR. The analysis results of dual-route speech processing networks showed that the functional connection of Wernicke's area and homolog Wernicke's area were age-related increases. Further to clarify the age-related characteristics of the dual-route speech processing networks, graph-theoretical network analysis revealed an age-related increase in the efficiency of the networks, and the age-related differences in nodal characteristics were found both in Wernicke's area and homolog Wernicke's area under noise environment. Thus, Wernicke's area might be a key network hub to maintain efficient information transfer across the speech process network with healthy aging. Moreover, older adults would recruit more resources from the homologous Wernicke's area in a noisy environment. The recruitment of the homolog of Wernicke's area might provide a means of compensation for older adults for decoding speech in an adverse listening environment. Together, our results characterized dual-route speech processing networks at varying noise environments and provided new insight for the compensatory theories of how aging modulates the dual-route speech processing functional networks.


Assuntos
Percepção da Fala , Fala , Pessoa de Meia-Idade , Adulto Jovem , Humanos , Idoso , Imageamento por Ressonância Magnética , Envelhecimento , Encéfalo/diagnóstico por imagem
4.
Ear Hear ; 45(3): 742-752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38268081

RESUMO

OBJECTIVES: Age-related speech perception difficulties may be related to a decline in central auditory processing abilities, particularly in noisy or challenging environments. However, how the activation patterns related to speech stimulation in different noise situations change with normal aging has yet to be elucidated. In this study, we aimed to investigate the effects of noisy environments and aging on patterns of auditory cortical activation. DESIGN: We analyzed the functional near-infrared spectroscopy signals of 20 young adults, 21 middle-aged adults, and 21 elderly adults, and evaluated their cortical response patterns to speech stimuli under five different signal to noise ratios (SNRs). In addition, we analyzed the behavior score, activation intensity, oxyhemoglobin variability, and dominant hemisphere, to investigate the effects of aging and noisy environments on auditory cortical activation. RESULTS: Activation intensity and oxyhemoglobin variability both showed a decreasing trend with aging at an SNR of 0 dB; we also identified a strong correlation between activation intensity and age under this condition. However, we observed an inconsistent activation pattern when the SNR was 5 dB. Furthermore, our analysis revealed that the left hemisphere may be more susceptible to aging than the right hemisphere. Activation in the right hemisphere was more evident in older adults than in the left hemisphere; in contrast, younger adults showed leftward lateralization. CONCLUSIONS: Our analysis showed that with aging, auditory cortical regions gradually become inflexible in noisy environments. Furthermore, changes in cortical activation patterns with aging may be related to SNR conditions, and that understandable speech with a low SNR ratio but still understandable may induce the highest level of activation. We also found that the left hemisphere was more affected by aging than the right hemisphere in speech perception tasks; the left-sided dominance observed in younger individuals gradually shifted to the right hemisphere with aging.


Assuntos
Córtex Auditivo , Percepção da Fala , Idoso , Pessoa de Meia-Idade , Adulto Jovem , Humanos , Córtex Auditivo/fisiologia , Percepção da Fala/fisiologia , Oxiemoglobinas , Espectroscopia de Luz Próxima ao Infravermelho , Ruído , Percepção Auditiva , Estimulação Acústica
5.
Front Neurosci ; 18: 1353413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562303

RESUMO

Background: Patients with age-related hearing loss (ARHL) often struggle with tracking and locating sound sources, but the neural signature associated with these impairments remains unclear. Materials and methods: Using a passive listening task with stimuli from five different horizontal directions in functional magnetic resonance imaging, we defined functional regions of interest (ROIs) of the auditory "where" pathway based on the data of previous literatures and young normal hearing listeners (n = 20). Then, we investigated associations of the demographic, cognitive, and behavioral features of sound localization with task-based activation and connectivity of the ROIs in ARHL patients (n = 22). Results: We found that the increased high-level region activation, such as the premotor cortex and inferior parietal lobule, was associated with increased localization accuracy and cognitive function. Moreover, increased connectivity between the left planum temporale and left superior frontal gyrus was associated with increased localization accuracy in ARHL. Increased connectivity between right primary auditory cortex and right middle temporal gyrus, right premotor cortex and left anterior cingulate cortex, and right planum temporale and left lingual gyrus in ARHL was associated with decreased localization accuracy. Among the ARHL patients, the task-dependent brain activation and connectivity of certain ROIs were associated with education, hearing loss duration, and cognitive function. Conclusion: Consistent with the sensory deprivation hypothesis, in ARHL, sound source identification, which requires advanced processing in the high-level cortex, is impaired, whereas the right-left discrimination, which relies on the primary sensory cortex, is compensated with a tendency to recruit more resources concerning cognition and attention to the auditory sensory cortex. Overall, this study expanded our understanding of the neural mechanisms contributing to sound localization deficits associated with ARHL and may serve as a potential imaging biomarker for investigating and predicting anomalous sound localization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa