Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(8): 284, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963443

RESUMO

Air pollutants and temperature are significant threats to public health, and the complex linkages between the environmental factors and their interactions harm respiratory diseases. This study is aimed to analyze the impact of air pollutants and meteorological factors on respiratory diseases and their synergistic effects in Dingxi, a city in northwestern China, from 2018 to 2020 using a generalized additive model (GAM). Relative risk (RR) was employed to quantitatively evaluate the temperature modification on the short-term effects of PM2.5 and O3 and the synergistic effects of air pollutants (PM2.5 and O3) and meteorological elements (temperature and relative humidity) on respiratory diseases. The results indicated that the RRs per inter-quatile range (IQR) rise in PM2.5 and O3 concentrations were (1.066, 95% CI: 1.009-1.127, lag2) and (1.037, 95% CI: 0.975-1.102, lag4) for respiratory diseases, respectively. Temperature stratification suggests that the influence of PM2.5 on respiratory diseases was significantly enhanced at low and moderate temperatures, and the risk of respiratory diseases caused by O3 was significantly increased at high temperatures. The synergy analysis demonstrated significant a synergistic effect of PM2.5 with low temperature and high relative humidity and an antagonistic effect of high relative humidity and O3 on respiratory diseases. The findings would provide a scientific basis for the impact of pollutants on respiratory diseases in Northwest China.


Assuntos
Poluentes Atmosféricos , Umidade , Ozônio , Material Particulado , Temperatura , China/epidemiologia , Humanos , Doenças Respiratórias/epidemiologia , Cidades
2.
Sci Rep ; 14(1): 14751, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926518

RESUMO

Air pollution poses a major threat to both the environment and public health. The air quality index (AQI), aggregate AQI, new health risk-based air quality index (NHAQI), and NHAQI-WHO were employed to quantitatively evaluate the characterization of air pollution and the associated health risk in Gansu Province before (P-I) and after (P-II) COVID-19 pandemic. The results indicated that AQI system undervalued the comprehensive health risk impact of the six criteria pollutants compared with the other three indices. The stringent lockdown measures contributed to a considerable reduction in SO2, CO, PM2.5, NO2 and PM10; these concentrations were 43.4%, 34.6%, 21.4%, 17.4%, and 14.2% lower in P-II than P-I, respectively. But the concentration of O3 had no obvious improvement. The higher sandstorm frequency in P-II led to no significant decrease in the ERtotal and even resulted in an increase in the average ERtotal in cities located in northwestern Gansu from 0.78% in P-I to 1.0% in P-II. The cumulative distribution of NHAQI-based population-weighted exposure revealed that 24% of the total population was still exposed to light pollution in spring during P-II, while the air quality in other three seasons had significant improvements and all people were under healthy air quality level.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Material Particulado , China/epidemiologia , Humanos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , COVID-19/epidemiologia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Material Particulado/análise , Material Particulado/efeitos adversos , SARS-CoV-2/isolamento & purificação , Monitoramento Ambiental/métodos , Exposição Ambiental/efeitos adversos , Saúde Pública , Dióxido de Enxofre/análise , Dióxido de Enxofre/efeitos adversos , Medição de Risco , Ozônio/análise
3.
Sci Total Environ ; 934: 173362, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772485

RESUMO

To clarify the mechanism underlying the effects of weather patterns and topography on air pollution, this study conducted the obliquely rotated principal component analysis in the T-mode to analyze ERA5 reanalysis data and categorize typical weather patterns at a 700-hPa geopotential height from 2015 to 2022. The probability of worsened air pollution attributable to weather patterns was quantitatively assessed using a generalized additive model. The results indicated that due to the influence of topography, Lanzhou was affected by an extended period of downdraft (with weak convective intensity) and the delayed formation of a convective boundary layer during the daytime by 1-2 h relative to other areas. Under the combined effect of low trough patterns (south low pressure type [SL] and south low weak pressure type [SL-]) and topography, the formation of a stable layer above the planetary boundary layer (PBL) would weaken the vertical exchange of the local airflow and inhibit the development of the PBL. The type of SL led to the most severe pollution, causing a 61.9 % (95 % confidence interval [CI]: 46.3 %-79.3 %) increase in PM2.5 concentration. For southwest high pressure patterns (south high [SH], southwest weak high [SWH-], southwest high [SWH], and southwest strong high [SWH+] pressure types), the prevailing northwest wind was the main transport path for pollutants. For the high pressure patterns (north high [NH] and northwest high [NWH] pressure types) and south wind patterns (southeast weak high [SEH-], southeast high [SEH], and northeast high [NEH] pressure types), the enhancement of vertical convection, deepening of the PBL, and reduction of pollution transport led to improved air quality. The NH, NWH, and NEH pressure types caused PM2.5 concentration to decrease by 18.4 % (95 % CI: 8.8 %-27.1 %), 14.9 % (95 % CI: 4.7 %-24.0 %), and 35.9 % (95 % CI: 9.7 %-54.6 %), respectively.

4.
Front Public Health ; 11: 1322019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38131020

RESUMO

Background: With the intensification of global climate warming, extreme low temperature events such as cold spells have become an increasingly significant threat to public health. Few studies have examined the relationship between cold spells and mortality in multiple Chinese provinces. Methods: We employed health impact functions for temperature and mortality to quantify the health risks of the first winter cold spell in China on November 26th, 2022, and analyzed the reasons for the stronger development of the cold spell in terms of the circulation field. Results: This cold spell was a result of the continuous reinforcement of the blocking high-pressure system in the Ural Mountains, leading to the deepening of the cold vortex in front of it. Temperature changes associated with the movement of cold fronts produced additional mortality risks and mortality burdens. In general, the average excess risk (ER) of death during the cold spell in China was 2.75%, with a total cumulative excess of 369,056 deaths. The health risks associated with temperatures were unevenly distributed spatially in China, with the ER values ranging from a minimum of 0.14% to a maximum of 5.72%, and temperature drops disproportionately affect southern regions of China more than northern regions. The cumulative excess deaths exibited the highest in eastern and central China, with 87,655 and 80,230 respectively, and the lowest in northwest China with 27,474 deaths. Among the provinces, excess deaths pronounced the highest in Shandong with 29,492 and the lowest in Tibet with only 196. Conclusion: The study can provide some insight into the mortality burden of cold spells in China, while emphasising the importance of understanding the complex relationship between extreme low temperature events and human health. The outcomes could provide valuable revelations for informing pertinent public health policies.


Assuntos
Clima , Temperatura Baixa , Humanos , Temperatura , Estações do Ano , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa