Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257210

RESUMO

MASM, a structurally modified derivative of matrine, exhibits superior efficacy in reducing inflammation and liver injury in rats when compared to matrine. This study aims to investigate the pharmacokinetic profile and acute toxicity of MASM. Pharmacokinetic results revealed that MASM exhibited rapid absorption, with a Tmax ranging from 0.21 ± 0.04 h to 1.31 ± 0.53 h, and was eliminated slowly, with a t1/2 of approximately 10 h regardless of the route of administration (intravenous, intraperitoneal, or intragastric). The absolute intragastric bioavailability of MASM in rats was determined to be 44.50%, which was significantly higher than that of matrine (18.5%). MASM was detected in all rat tissues including the brain, and through the utilization of stable isotope-labeled compounds and standard references, ten metabolites of MASM, namely sophocarpine, oxysophocarpine, and oxymatrine, were tentatively identified. The LD50 of MASM in mice was determined to be 94.25 mg/kg, surpassing that of matrine (83.21 mg/kg) based on acute toxicity results. Histopathological and biochemical analysis indicated no significant alterations in the primary organs of the low- to medium-dosage groups of MASM. These findings provide valuable insights into the efficacy and toxicity profile of MASM.


Assuntos
Antracenos , Matrinas , Tionas , Camundongos , Ratos , Animais , Radioisótopos de Carbono , Distribuição Tecidual
2.
Opt Express ; 31(2): 3278-3290, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785324

RESUMO

We report on the development of all-fiber active photoacoustic spectroscopy, where active photoacoustic effect is generated by embedding a micro-nano fiber inside a fiber laser resonator to exploit the evanescent field of the high intracavity power. Acetylene detection at 1530.37 nm was selected for gas sensing demonstration. With a small diameter of 1.1 µm, the tapped fiber exploited ∼20% intracavity power for the evanescent-wave photoacoustic excitation, while only introduced a low intrinsic cavity loss of 0.08 dB. Our sensor achieved a minimum detection limit of 1 ppm at an integration time of 10 s, which can be improved to 73 ppb at 1000 s benefited from the high system stability. The sensing dynamic range was determined to be more than five orders. This spectroscopic technique combines fiber laser, photoacoustic spectroscopy, and fiber evanescent-wave absorption to achieve gas sensing with high flexibility, low optical noise, and easy optical alignment. Current limitations were discussed in detail to explore feasible ways to improve the performance in response time, dynamic range and sensitivity.

3.
Opt Express ; 31(22): 36293-36303, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017784

RESUMO

We have theoretically investigated the size-dependent optoelectronic properties of InGaP/AlGaInP-based red micro-LEDs through an electro-optical-thermal coupling model. The model considers thermal effects due to current crowding near the electrodes, non-thermal efficiency droop due to electron leakage, and etch defects on the LED sidewall. Sidewall defects reduce the carrier concentration at the light-emitting surface's edge and exacerbate the current crowding effect. In addition, p-side electron leakage at high current densities is the leading cause of the efficiency droop of AlGaInP LEDs. In contrast, the effect of temperature on the overall efficiency degradation of LEDs is even more significant.

4.
Opt Express ; 29(3): 4405-4421, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771019

RESUMO

This paper addresses the problem of inaccurate emissivity presets for multispectral temperature measurements of aero-engine turbine blades and proposes a narrow-band spectral window moving temperature inversion algorithm that does not rely on an assumed emissivity model. As the emissivity of the measured object changes slowly over the narrow spectral window, the temperature corresponding to the normalized spectral radiation intensity for each window in the set temperature range is calculated using the Mahalanobis distance coefficient. The temperature error is less than 1.33% relative to thermocouple measurements when using this algorithm to perform temperature inversion on the experimental spectrum curves for different types of alloy samples. Furthermore, a two-dimensional spectral temperature field measurement platform was built, and the surface temperature fields of alloy samples were reconstructed using the narrow-band spectral window moving algorithm. The proposed algorithm is shown to provide high-precision inversion of the temperature field without presetting the emissivity model, which gives a new processing concept for the application of infrared spectral temperature measurements.

5.
Opt Express ; 29(13): 20217-20228, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266115

RESUMO

In this article, 2000 PPI red silicon-based AlGaInP micro-LED arrays were fabricated and investigated. The AlGaInP epilayer was transferred onto the silicon substrate via the In-Ag bonding technique and an epilayer lift-off process. The silicon substrate with a high thermal conductivity could provide satisfactory heat dissipation, leading to micro-LED arrays that had a stable emission spectrum with increasing current density from 20 to 420 A/cm2 along with a red-shift of the peak position from 624.69 to 627.12 nm (Δλ = 2.43 nm). Additionally, increasing the injection current density had little effect on the CIE (x, y) of the micro-LED arrays. Further, the I-V characteristics and light output power of micro-LED arrays with different pixel sizes demonstrated that the AlGaInP red micro-LED array on a silicon substrate had excellent electrical stability and optical output.

6.
Opt Express ; 28(5): 6320-6335, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225883

RESUMO

A novel tempo-spatially mixed modulation imaging Fourier transform spectrometer based on a stepped micro-mirror has the advantages of high throughput, compactness, and stability. In this paper, we present a method of image- and spectrum-processing and performance evaluation, which is utilized to obtain a high-quality reconstructed image without stitching gaps and a reconstructed spectrum with significantly reduced noise and side-lobe oscillation. A theoretical model of instrument line shape and signal-to-noise ratio is established to verify the effectiveness of non-uniformity sampling correction and spectral resolution enhancement. Meanwhile, the performance of the instrument was evaluated combined with experimental results.

7.
Langmuir ; 36(46): 13752-13758, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33175529

RESUMO

The edge doping effect would help improve the carbon-based electrocatalysis. Herein, we present an all-mechanical technique for the fabrication of cut, exfoliated N-doped carbon nanotubes (C, E-N-CNTs). Such nanohybrids with an edge-N-rich structure are obtained through sequential doping and mechanical treatments of the pristine bulk-CNTs. The C, E-N-CNT/carbon black (C, E-N-CNT/C) demonstrates exciting oxygen reduction reaction (ORR) electrocatalysis with exceptionally low-onset potential (E0, 913 mV versus RHE) and satisfactory half-wave potential (E1/2, merely -7.3 mV shift compared with that of commercial 20% platinum/C (Pt/C)). Besides, the C, E-N-CNT/C presents significantly enhanced durability and tolerance in chronoamperometry test with methanol injection compared with the Pt/C. Our work would facilitate the mass production and full exploration of nonmetallic electrocatalysts.

8.
Anal Chem ; 91(16): 10750-10756, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31313580

RESUMO

Vibrational spectroscopic imaging techniques, based on infrared absorption or Raman scattering, allow for noninvasive chemically specific visualization of biological systems. The infrared and Raman modalities with different selection rules provide complementary information. Specifically, infrared microscopy provides strong signals in the fingerprint region, but suffers from low spatial resolution. Raman microscopy provides submicrometer resolution, but requires a long acquisition time. We developed a system that combines the strengths of both techniques by integrating confocal Raman microspectroscopy to the recently developed mid-infrared photothermal microscopy. This hybrid system is capable of fast infrared photothermal imaging of living cells with submicrometer resolution to identify points of interest, followed by a full-spectrum Raman analysis of the identified objects. In addition, a fingerprint photothermal spectrum can be acquired by scanning the wavelengths of the infrared laser. Comprehensive vibrational fingerprint mapping of live cells, demonstrated in adipocytes and single bacteria, promises broad applications of this technology in biology and material science.


Assuntos
Imagem Óptica , Análise de Célula Única , Células 3T3-L1 , Animais , Camundongos , Microscopia de Fluorescência , Análise Espectral Raman
9.
Appl Opt ; 58(31): 8383-8389, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873318

RESUMO

This paper reports on the design and fabrication of a ${48} \times {48}$48×48 full-color pixelated addressable light-emitting diode on silicon (LEDoS) micro display. The metallization pattern was designed and fabricated on a silicon substrate, while red, green, and blue monochromatic micro LEDs were integrated on the silicon substrate using transfer printing. The red, green, and blue micro LEDs are flip-chip structures in which red micro LEDs were fabricated using substrate transfer, mesa etching, metal deposition, and chip dicing. The integration process does not require wire bonding, which reduces the full-color pixel size and increases the integration speed. The LEDoS micro display can be addressed individually for each LED pixel and display representative patterns.

10.
Opt Lett ; 39(16): 4911-4, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121906

RESUMO

A novel static medium wave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) is conceptually proposed and experimentally demonstrated. In this system, the moving mirror in traditional temporally modulated IFTS is replaced by multi-step micro-mirrors to realize the static design. Compared with the traditional spatially modulated IFTS, they have no slit system and are superior with larger luminous flux and higher energy efficiency. The use of the multi-step micro-mirrors can also make the system compact and light.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(1): 274-8, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24783575

RESUMO

Collimation system provides collimated light for the static Fourier-transform spectroscopy (SFTS). Its quality is crucial to the signal to noise ratio (SNR) of SFTS. In the present paper, the physical model of SFTS was established based on the Fresnel diffraction theory by means of numerical software. The influence of collimation system on the SFTS was discussed in detail focusing on the aberrations of collimation lens and the quality of extended source. The results of simulation show that the influences of different kinds of aberrations on SNR take on obvious regularity, and in particular, the influences of off-axis aberrations on SNR are closely related to the location of off-axis point source. Finally the extended source's maximum radius allowed was obtained by simulation, which equals to 0.65 mm. The discussion results will be used for the design of collimation system.

12.
Sci Rep ; 14(1): 15900, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987379

RESUMO

This study aimed to investigate the association between serum chloride levels and all-cause mortality in critically ill patients with chronic obstructive pulmonary disease (COPD). Data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were extracted for analysis. Demographic information, laboratory results, medical histories, vital signs, and prognosis-related data were collected. Cox proportional hazard models were used to assess the relationship between serum chloride levels and 90-day and 365-day mortality. Subgroup analyses were conducted to explore potential interactions between serum chloride levels and various factors. The study included patients with a median age of 72.00 years, of whom 52.39% were male. Higher quartiles of serum chloride levels were associated with significantly lower levels of weight, RBC, platelet, hemoglobin, and other variables (P < 0.05), accompanied by lower 90-day and 365-day mortality (P < 0.05). Cox proportional hazard model indicated that the risk of death was significantly lower in the fourth quartile of serum chloride levels compared with the first quartile after adjusting for confounders (90-day HR = 0.54, 365-day HR = 0.52, both P < 0.05). An L-shape relationship was observed, with risks of death decreasing as serum chloride levels increased, although the magnitude decreased when levels reached 102 mmol/L. This study demonstrated an independent L-shaped association between serum chloride levels and all-cause mortality in critically ill patients with COPD. This finding helps us to understand the prognostic value of serum chloride levels in critically ill patients with COPD.


Assuntos
Cloretos , Estado Terminal , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Feminino , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/mortalidade , Estado Terminal/mortalidade , Idoso , Estudos Retrospectivos , Cloretos/sangue , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Idoso de 80 Anos ou mais
13.
Mol Omics ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984672

RESUMO

Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease that significantly impairs physical function in young individuals. However, the identification of radiographic changes in AS is frequently delayed, and the diagnostic efficacy of biomarkers like HLA-B27 remains moderately effective, with unsatisfactory sensitivity and specificity. In contrast to existing literature, our current experiment utilized a larger sample size and employed both untargeted and targeted UHPLC-QTOF-MS/MS based metabolomics to identify the metabolite profile and potential biomarkers of AS. The results indicated a notable divergence between the two groups, and a total of 170 different metabolites were identified, which were associated with the 6 primary metabolic pathways exhibiting a correlation with AS. Among these, 26 metabolites exhibited high sensitivity and specificity with area under curve (AUC) values greater than 0.8. Subsequent targeted quantitative analysis discovered 3 metabolites, namely 3-amino-2-piperidone, hypoxanthine and octadecylamine, exhibiting excellent distinguishing ability based on the results of the ROC curve and the Random Forest model, thus qualifying as potential biomarkers for AS. Summarily, our untargeted and targeted metabolomics investigation offers novel and precise insights into potential biomarkers for AS, potentially enhancing diagnostic capabilities and furthering the comprehension of the condition's pathophysiology.

14.
Food Chem X ; 21: 101221, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38379804

RESUMO

Wolfberry, known as Goji berry, is the fruit of Lycium barbarum L. (LB). As a famous functional food and TCM, the cost and efficacy of LB are closely linked to its geographical origin. The present study aimed to establish an effective method for distinguishing LB from different geographical origins. By employing UHPLC-QTOF-MS/MS combined with multivariate analysis, the metabolite profiling of LB (199 batches) obtained from Ningxia, Gansu, Qinghai, and Xinjiang, was evaluated. The results demonstrated that the method effectively distinguished LB from the four regions, with a total of 148 different metabolites being detected. Subsequent assessment using heat maps, Venn analysis, receiver operating characteristics curves and dot plots revealed 21 of these metabolites exhibited exceptional sensitivity and specificity, with under-curve values approaching 1, thus indicating their potential as biomarkers for LB. These findings strongly support the suitability of UHPLC-QTOF-MS/MS-based metabolomics as an effective approach to identify the source of LB.

15.
Micromachines (Basel) ; 14(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838179

RESUMO

To meet the demands of highly integrated and miniaturized radio frequency front-end (RFFE) modules, multi-passband filters which support multi-channel compounding come to the foreground. In this work, we proposed a new design of a dual-passband surface acoustic wave (SAW) filter based on a 32°YX-LiNbO3 (LN)/SiO2/SiC multilayered structure. The filter is of a standalone ladder topology and comprises dual-mode resonators, in which the shear horizontal (SH) mode and high-order SH mode are simultaneously excited through electrode thickness modulation. The impact of electrode thickness on the performance of the dual-mode resonator was systematically investigated by the finite element method (FEM), and resonators were prepared and verified the simulation results. The electromechanical coupling coefficients (K2) of the SH modes are 15.1% and 17.0%, while the maximum Bode-Q (Qmax) values are 150 and 247, respectively, for the fabricated resonators with wavelengths of 1 µm and 1.1 µm. In terms of the high-order SH modes in these resonators, the K2 values are 9.8% and 8.4%, and Qmax values are 190 and 262, respectively. The fabricated dual-band filter shows the center frequencies (fc) of 3065 MHz and 4808 MHz as two bands, with 3-dB fractional bandwidths (FBW) of 5.1% and 5.9%, respectively. Such a dual-band SAW filter based on a conventional ladder topology is meaningful in terms of its compact layout and diminished area occupancy. This work provides a promising avenue to constitute a high-performance dual-passband SAW filter for sub-6 GHz RF application.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37506008

RESUMO

The 5G communication system has experienced a substantial expansion of the spectrum, which poses higher requirements to radio frequency (RF) filters in enhancing their operating frequencies and bandwidths. To this end, this work focused on solving the filtering scheme for challenging 5G n77 and n78 bands and successfully implemented the corresponding spurious-free surface acoustic wave (SAW) filters exploiting large-coupling shear horizontal (SH) modes based on X-cut LiNbO3 (LN)/silicon carbide (SiC) heterostructure. Here, we initially investigated the suppression methods for spurious modes theoretically and experimentally and summarized an effective normalized LN thickness ( [Formula: see text] range of 0.15-0.30 for mitigating Rayleigh modes and higher order modes, as well as tilted interdigital transducers (IDT) by about 24° for eliminating transverse modes. Resonators with wavelengths ( λ) from 0.95 to [Formula: see text] were also fabricated, showing a scalable resonance from 2.48 to 4.21 GHz without any in-band ripple. Two filters completely meeting 5G n77 and n78 full bands were finally constructed, showing center frequencies ( fc) of 3763 and 3560 MHz, 3-dB fractional bandwidths (FBW) of 24.8% and 15.6%, and out-of-band (OoB) rejections of 18.7 and 28.1 dB, respectively. This work reveals that X-LN/SiC heterostructure is a promising underpinning material for SAW filters in 5G commercial applications.

17.
Pharmacol Rep ; 75(6): 1410-1444, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906390

RESUMO

Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.


Assuntos
Endocanabinoides , Humanos , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo
18.
Nanoscale Adv ; 5(10): 2743-2747, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37205280

RESUMO

This paper presents an easy and intact process based on microfluidics static droplet array (SDA) technology to fabricate quantum dot (QD) arrays for full-color micro-LED displays. A minimal sub-pixel size of 20 µm was achieved, and the fluorescence-converted red and green arrays provide good light uniformity of 98.58% and 98.72%, respectively.

19.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888932

RESUMO

This article presents a general-purpose model that enables efficient and accurate calculation of third-order nonlinear signals in surface acoustic wave (SAW) devices. This model is based on piezoelectric constitutive equations combined with perturbation theory, which can be analyzed by full finite element method (FEM). For validation, third-order harmonic (H3) responses and intermodulation distortions (IMD3) in SAW resonators are simulated, and their calculation results fit well to experimental data in the literature. Then, the generation mechanisms of the third-order nonlinearity in SAW resonators are discussed. The dominant generation mechanisms for different nonlinear signals and the relation between electrode materials and H3 peak magnitude are revealed, which provides an important guideline for further nonlinear suppression.

20.
Micromachines (Basel) ; 13(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35334731

RESUMO

To cope with ubiquitous wireless connectivity and the increased and faster data delivery in 5G communication, surface acoustic wave (SAW) filters are progressively requiring wider bandwidths. Conventional bulk 15°YX-LiNbO3 substrates with a large coupling coefficient (K2) are attractive for the low-cost mass production of wideband SAW filters, but these generally suffer from spurious responses, limiting their practical application. In this work, a novel and simple SAW configuration is proposed that uses thickness-modulated interdigital transducer (IDT) structures to overcome the limitations set by spurious responses. Different from the conventional design where the thicknesses of the IDT electrodes in the series and parallel resonators generally kept the same, the proposed configuration adopts IDT electrodes of different thicknesses in the series and shunt resonators to suppress or remove unwanted spurious Rayleigh modes from the filter passband. Two different ultra-wideband SAW filter designs employing thickness-modulated IDTs were designed and fabricated to validate the effective suppression of spurious modes. The SAW filters experimentally featured spurious-free responses in the passband as well as a large 3 dB fractional bandwidth (FBW) in the 18.0% and 24.1% ranges and low insertion losses below 1 dB. This work can significantly broaden the range of applications for SAW devices and can open a pathway to commercialize ultra-wideband SAW filters in 5G communication systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa