Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
Nature ; 608(7922): 390-396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922513

RESUMO

Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a ß-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.


Assuntos
Antibacterianos , Bactérias , Membrana Celular , Depsipeptídeos , Viabilidade Microbiana , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/citologia , Bactérias/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Difosfatos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Lipídeos/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Pirrolidinas/química , Açúcares/química
2.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36460622

RESUMO

Drug response prediction in cancer cell lines is of great significance in personalized medicine. In this study, we propose GADRP, a cancer drug response prediction model based on graph convolutional networks (GCNs) and autoencoders (AEs). We first use a stacked deep AE to extract low-dimensional representations from cell line features, and then construct a sparse drug cell line pair (DCP) network incorporating drug, cell line, and DCP similarity information. Later, initial residual and layer attention-based GCN (ILGCN) that can alleviate over-smoothing problem is utilized to learn DCP features. And finally, fully connected network is employed to make prediction. Benchmarking results demonstrate that GADRP can significantly improve prediction performance on all metrics compared with baselines on five datasets. Particularly, experiments of predictions of unknown DCP responses, drug-cancer tissue associations, and drug-pathway associations illustrate the predictive power of GADRP. All results highlight the effectiveness of GADRP in predicting drug responses, and its potential value in guiding anti-cancer drug selection.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benchmarking , Linhagem Celular , Aprendizagem
3.
J Infect Dis ; 229(1): 117-121, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37565805

RESUMO

Using a prospective, observational cohort study during the post-"dynamic COVID-zero" wave in China, we estimated short-term relative effectiveness against Omicron BA.5 infection of inhaled aerosolized adenovirus type 5-vectored ancestral strain coronavirus disease 2019 (COVID-19) vaccine as a second booster dose approximately 1 year after homologous boosted primary series of inactivated COVID-19 vaccine compared with no second booster. Participants reported nucleic acid or antigen test results weekly until they tested positive or completed predesignated follow-up. After excluding participants infected <14 days after study entry, relative effectiveness among the 6576 participants was 61% in 18- to 59-year-olds and 38% in ≥60-year-olds and was sustained for 12 weeks.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Estudos Prospectivos , Eficácia de Vacinas , China/epidemiologia , Adenoviridae/genética
4.
Gastroenterology ; 165(3): 629-646, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247644

RESUMO

BACKGROUND & AIMS: Hyperactivation of ribosome biogenesis leads to hepatocyte transformation and plays pivotal roles in hepatocellular carcinoma (HCC) development. We aimed to identify critical ribosome biogenesis proteins that are overexpressed and crucial in HCC progression. METHODS: HEAT repeat containing 1 (HEATR1) expression and clinical correlations were analyzed using The Cancer Genome Atlas and Gene Expression Omnibus databases and further evaluated by immunohistochemical analysis of an HCC tissue microarray. Gene expression was knocked down by small interfering RNA. HEATR1-knockdown cells were subjected to viability, cell cycle, and apoptosis assays and used to establish subcutaneous and orthotopic tumor models. Chromatin immunoprecipitation and quantitative polymerase chain reaction were performed to detect the association of candidate proteins with specific DNA sequences. Endogenous coimmunoprecipitation combined with mass spectrometry was used to identify protein interactions. We performed immunoblot and immunofluorescence assays to detect and localize proteins in cells. The nucleolus ultrastructure was detected by transmission electron microscopy. Click-iT (Thermo Fisher Scientific) RNA imaging and puromycin incorporation assays were used to measure nascent ribosomal RNA and protein synthesis, respectively. Proteasome activity, 20S proteasome foci formation, and protein stability were evaluated in HEATR1-knockdown HCC cells. RESULTS: HEATR1 was the most up-regulated gene in a set of ribosome biogenesis mediators in HCC samples. High expression of HEATR1 was associated with poor survival and malignant clinicopathologic features in patients with HCC and contributed to HCC growth in vitro and in vivo. HEATR1 expression was regulated by the transcription factor specificity protein 1, which can be activated by insulin-like growth factor 1-mammalian target of rapamycin complex 1 signaling in HCC cells. HEATR1 localized predominantly in the nucleolus, bound to ribosomal DNA, and was associated with RNA polymerase I transcription/processing factors. Knockdown of HEATR1 disrupted ribosomal RNA biogenesis and impaired nascent protein synthesis, leading to reduced cytoplasmic proteasome activity and inhibitory-κB/nuclear factor-κB signaling. Moreover, HEATR1 knockdown induced nucleolar stress with increased nuclear proteasome activity and inactivation of the nucleophosmin 1-MYC axis. CONCLUSIONS: Our study revealed that HEATR1 is up-regulated by insulin-like growth factor 1-mammalian target of rapamycin complex 1-specificity protein 1 signaling in HCC and functions as a crucial regulator of ribosome biogenesis and proteome homeostasis to promote HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Homeostase , Temperatura Alta , Fator de Crescimento Insulin-Like I/genética , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteoma/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
5.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35180781

RESUMO

Although there are a large number of structural variations in the chromosomes of each individual, there is a lack of more accurate methods for identifying clinical pathogenic variants. Here, we proposed SVPath, a machine learning-based method to predict the pathogenicity of deletions, insertions and duplications structural variations that occur in exons. We constructed three types of annotation features for each structural variation event in the ClinVar database. First, we treated complex structural variations as multiple consecutive single nucleotide polymorphisms events, and annotated them with correlation scores based on single nucleic acid substitutions, such as the impact on protein function. Second, we determined which genes the variation occurred in, and constructed gene-based annotation features for each structural variation. Third, we also calculated related features based on the transcriptome, such as histone signal, the overlap ratio of variation and genomic element definitions, etc. Finally, we employed a gradient boosting decision tree machine learning method, and used the deletions, insertions and duplications in the ClinVar database to train a structural variation pathogenicity prediction model SVPath. These structural variations are clearly indicated as pathogenic or benign. Experimental results show that our SVPath has achieved excellent predictive performance and outperforms existing state-of-the-art tools. SVPath is very promising in evaluating the clinical pathogenicity of structural variants. SVPath can be used in clinical research to predict the clinical significance of unknown pathogenicity and new structural variation, so as to explore the relationship between diseases and structural variations in a computational way.


Assuntos
Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único , Éxons , Humanos , Anotação de Sequência Molecular , Virulência
6.
BMC Cancer ; 24(1): 59, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200424

RESUMO

BACKGROUND: Pseudo-computed tomography (pCT) quality is a crucial issue in magnetic resonance image (MRI)-only brain stereotactic radiotherapy (SRT), so this study systematically evaluated it from the multi-modal radiomics perspective. METHODS: 34 cases (< 30 cm³) were retrospectively included (2021.9-2022.10). For each case, both CT and MRI scans were performed at simulation, and pCT was generated by a convolutional neural network (CNN) from planning MRI. Conformal arc or volumetric modulated arc technique was used to optimize the dose distribution. The SRT dose was compared between pCT and planning CT with dose volume histogram (DVH) metrics and gamma index. Wilcoxon test and Spearman analysis were used to identify key factors associated with dose deviations. Additionally, original image features were extracted for radiomic analysis. Tumor control probability (TCP) and normal tissue complication probability (NTCP) were employed for efficacy evaluation. RESULTS: There was no significant difference between pCT and planning CT except for radiomics. The mean value of Hounsfield unit of the planning CT was slightly higher than that of pCT. The Gadolinium-based agents in planning MRI could increase DVH metrics deviation slightly. The median local gamma passing rates (1%/1 mm) between planning CTs and pCTs (non-contrast) was 92.6% (range 63.5-99.6%). Also, differences were observed in more than 85% of original radiomic features. The mean absolute deviation in TCP was 0.03%, and the NTCP difference was below 0.02%, except for the normal brain, which had a 0.16% difference. In addition, the number of SRT fractions and lesions, and lesion morphology could influence dose deviation. CONCLUSIONS: This is the first multi-modal radiomics analysis of CNN-based pCT from planning MRI for SRT of small brain lesions, covering dosiomics and radiomics. The findings suggest the potential of pCT in SRT plan design and efficacy prediction, but caution needs to be taken for radiomic analysis.


Assuntos
Encéfalo , Radiômica , Humanos , Estudos de Viabilidade , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Tomografia Computadorizada por Raios X
7.
Circ Res ; 131(11): 893-908, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36268709

RESUMO

BACKGROUND: Inflammation resolution and cardiac repair initiation after myocardial infarction (MI) require timely activation of reparative signals. Histone lactylation confers macrophage homeostatic gene expression signatures via transcriptional regulation. However, the role of histone lactylation in the repair response post-MI remains unclear. We aimed to investigate whether histone lactylation induces reparative gene expression in monocytes early and remotely post-MI. METHODS: Single-cell transcriptome data indicated that reparative genes were activated early and remotely in bone marrow and circulating monocytes before cardiac recruitment. Western blotting and immunofluorescence staining revealed increases in histone lactylation levels, including the previously identified histone H3K18 lactylation in monocyte-macrophages early post-MI. Through joint CUT&Tag and RNA-sequencing analyses, we identified Lrg1, Vegf-a, and IL-10 as histone H3K18 lactylation target genes. The increased modification and expression levels of these target genes post-MI were verified by chromatin immunoprecipitation-qPCR and reverse transcription-qPCR. RESULTS: We demonstrated that histone lactylation regulates the anti-inflammatory and pro-angiogenic dual activities of monocyte-macrophages by facilitating reparative gene transcription and confirmed that histone lactylation favors a reparative environment and improves cardiac function post-MI. Furthermore, we explored the potential positive role of monocyte histone lactylation in reperfused MI. Mechanistically, we provided new evidence that monocytes undergo metabolic reprogramming in the early stage of MI and demonstrated that dysregulated glycolysis and MCT1 (monocarboxylate transporter 1)-mediated lactate transport promote histone lactylation. Finally, we revealed the catalytic effect of IL (interleukin)-1ß-dependent GCN5 (general control non-depressible 5) recruitment on histone H3K18 lactylation and elucidated its potential role as an upstream regulatory element in the regulation of monocyte histone lactylation and downstream reparative gene expression post-MI. CONCLUSIONS: Histone lactylation promotes early remote activation of the reparative transcriptional response in monocytes, which is essential for the establishment of immune homeostasis and timely activation of the cardiac repair process post-MI.


Assuntos
Histonas , Infarto do Miocárdio , Humanos , Histonas/metabolismo , Ativação Transcricional , Infarto do Miocárdio/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo
8.
Int Wound J ; 21(4): e14548, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151911

RESUMO

The clinical management of traumatic chest incisions accompanied by rib fractures presents the formidable challenge. The study was carried out to compare the outcomes of auscultatory triangle internal fixation (ATIF) and external fixation (EF) in such injuries. From June 2019 to June 2022, 105 patients with multiple rib fractures participated in the cohort study in which they were divided into two groups: 53 patients underwent ATIF and 52 patients underwent EF. The incidence of surgical site infection, wound healing time, incidence of wound dehiscence, number of dressing changes, pain as measured by the visual analogue scale (VAS), duration of hospitalization, period of return to work, pulmonary complications and functionality of the upper limbs as assessed by the Disability of Arm, Shoulder, and Hand (DASH) questionnaire were among the parameters evaluated. In comparison with EF, ATIF demonstrated the decreased incidence of wound dehiscence (1.9% vs. 9.6%) (p < 0.05), surgical site infection (3.8 vs. 11.5) and wound healing time (12.3 ± 2.1 vs. 18.5 ± 3.7 days) (p < 0.05). Furthermore, during their ATIF treatment, patients required fewer changes of dressing (3.5 ± 0.8 vs. 5.7 ± 1.2) and demonstrated enhanced pain management, reduced hospital stays and expedited return to work (p < 0.05). ATIF group demonstrated enhancements in both upper limb functionality and post-operative pulmonary function (p < 0.05). The utilization of ATIF as opposed to EF for the treatment of traumatic chest wounds accompanied by rib fractures yields superior outcomes in terms of wound healing, infection reduction and restoration of pulmonary and upper limb functionality.


Assuntos
Fraturas das Costelas , Humanos , Fraturas das Costelas/complicações , Fraturas das Costelas/cirurgia , Infecção da Ferida Cirúrgica/terapia , Estudos de Coortes , Fixação Interna de Fraturas/efeitos adversos , Cicatrização , Estudos Retrospectivos
9.
J Environ Sci (China) ; 138: 249-265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135393

RESUMO

Previous air pollution control strategies didn't pay enough attention to regional collaboration and the spatial response sensitivities, resulting in limited control effects in China. This study proposed an effective PM2.5 and O3 control strategy scheme with the integration of Self-Organizing Map (SOM), Genetic Algorithm (GA) and WRF-CAMx, emphasizing regional collaborative control and the strengthening of control in sensitive areas. This scheme embodies the idea of hierarchical management and spatial-temporally differentiated management, with SOM identifying the collaborative subregions, GA providing the optimized subregion-level priority of precursor emission reductions, and WRF-CAMx providing response sensitivities for grid-level priority of precursor emission reductions. With Beijing-Tianjin-Hebei and the surrounding area (BTHSA, "2 + 26" cities) as the case study area, the optimized strategy required that regions along Taihang Mountains strengthen the emission reductions of all precursors in PM2.5-dominant seasons, and strengthen VOCs reductions but moderate NOx reductions in O3-dominant season. The spatiotemporally differentiated control strategy, without additional emission reduction burdens than the 14th Five-Year Plan proposed, reduced the average annual PM2.5 and MDA8 O3 concentrations in 28 cities by 3.2%-8.2% and 3.9%-9.7% respectively in comparison with non-differential control strategies, with the most prominent optimization effects occurring in the heavily polluted seasons (6.9%-18.0% for PM2.5 and 3.3%-14.2% for MDA8 O3, respectively). This study proposed an effective scheme for the collaborative control of PM2.5 and O3 in BTHSA, and shows important methodological implications for other regions suffering from similar air quality problems.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , China , Algoritmos
10.
J Infect Dis ; 228(3): 261-269, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37005365

RESUMO

BACKGROUND: China has been using inactivated coronavirus disease 2019 (COVID-19) vaccines as primary series and booster doses to protect the population from severe to fatal COVID-19. We evaluated primary and booster vaccine effectiveness (VE) against Omicron BA.2 infection outcomes. METHODS: This was a 13-province retrospective cohort study of quarantined close contacts of BA.2-infected individuals. Outcomes were BA.2 infection, COVID-19 pneumonia or worse, and severe/critical COVID-19. Absolute VE was estimated by comparison with an unvaccinated group. RESULTS: There were 289 427 close contacts ≥3 years old exposed to Omicron BA.2 cases; 31 831 turned nucleic acid amplification test-positive during quarantine, 97.2% with mild or asymptomatic infection, 2.6% with COVID-19 pneumonia, and 0.15% with severe/critical COVID-19. None died. Adjusted VE (aVE) against any infection was 17% for primary series and 22% when boosted. Primary series aVE in adults >18 years was 66% against COVID-19 pneumonia or worse and 91% against severe/critical COVID-19. Booster dose aVE was 74% against pneumonia or worse, and 93% against severe/critical COVID-19. CONCLUSIONS: Inactivated COVID-19 vaccines provided modest protection from infection, very good protection against pneumonia, and excellent protection against severe/critical COVID-19. Booster doses are necessary to provide strongest protection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Pré-Escolar , COVID-19/prevenção & controle , Estudos Retrospectivos , China/epidemiologia , Infecções Assintomáticas
11.
BMC Genomics ; 24(1): 347, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353738

RESUMO

BACKGROUND: In large-scale high-throughput sequencing projects and biobank construction, sample tagging is essential to prevent sample mix-ups. Despite the availability of fingerprint panels for DNA data, little research has been conducted on sample tagging of whole genome bisulfite sequencing (WGBS) data. This study aims to construct a pipeline and identify applicable fingerprint panels to address this problem. RESULTS: Using autosome-wide A/T polymorphic single nucleotide variants (SNVs) obtained from whole genome sequencing (WGS) and WGBS of individuals from the Third China National Stroke Registry, we designed a fingerprint panel and constructed an optimized pipeline for tagging WGBS data. This pipeline used Bis-SNP to call genotypes from the WGBS data, and optimized genotype comparison by eliminating wildtype homozygous and missing genotypes, and retaining variants with identical genomic coordinates and reference/alternative alleles. WGS-based and WGBS-based genotypes called from identical or different samples were extensively compared using hap.py. In the first batch of 94 samples, the genotype consistency rates were between 71.01%-84.23% and 51.43%-60.50% for the matched and mismatched WGS and WGBS data using the autosome-wide A/T polymorphic SNV panel. This capability to tag WGBS data was validated among the second batch of 240 samples, with genotype consistency rates ranging from 70.61%-84.65% to 49.58%-61.42% for the matched and mismatched data, respectively. We also determined that the number of genetic variants required to correctly tag WGBS data was on the order of thousands through testing six fingerprint panels with different orders for the number of variants. Additionally, we affirmed this result with two self-designed panels of 1351 and 1278 SNVs, respectively. Furthermore, this study confirmed that using the number of genetic variants with identical coordinates and ref/alt alleles, or identical genotypes could not correctly tag WGBS data. CONCLUSION: This study proposed an optimized pipeline, applicable fingerprint panels, and a lower boundary for the number of fingerprint genetic variants needed for correct sample tagging of WGBS data, which are valuable for tagging WGBS data and integrating multi-omics data for biobanks.


Assuntos
Genoma , Sulfitos , Humanos , Sequenciamento Completo do Genoma , Genótipo , Metilação de DNA , DNA , Sequenciamento de Nucleotídeos em Larga Escala
12.
Anal Chem ; 95(28): 10625-10633, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37424077

RESUMO

A growing number of studies have shown that tumor cells secrete extracellular vesicles (EVs) containing programmed death-ligand 1 (PD-L1) protein. These vesicles can travel to lymph nodes and remotely inactivate T cells, thereby evading immune system attack. Therefore, the simultaneous detection of PD-L1 protein expression in cells and EVs is of great significance in guiding immunotherapy. Herein, we developed a method based on qPCR for the simultaneous detection of PD-L1 protein and mRNA in EVs and their parental cells (PREC-qPCR assay). Lipid probes immobilized on magnetic beads were used to capture EVs directly from samples. For RNA assay, EVs were directly broken by heating and quantified with qPCR. As to protein assay, EVs were recognized and bound with specific probes (such as aptamers), which were used as templates in subsequent qPCR analysis. This method was used to analyze EVs of patient-derived tumor clusters (PTCs) and plasma samples from patients and healthy volunteers. The results revealed that the expression of exosomal PD-L1 in PTCs was correlated with tumor types and significantly higher in plasma-derived EVs from tumor patients than that of healthy individuals. When extended to cells and PD-L1 mRNAs, the results showed that the expression of PD-L1 protein was consistent with mRNA in cancer cell lines, while PTCs demonstrated significant heterogeneity. This comprehensive detection of PD-L1 at four levels (cell, EVs, protein, and mRNA) is believed to enhance our understanding of the relationship among PD-L1, tumors, and the immune system and to provide a promising tool for predicting the benefits of immunotherapy.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real , Humanos , Neoplasias/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Mensageiro/análise , RNA Mensageiro/genética , Vesículas Extracelulares/genética , Linhagem Celular Tumoral
13.
BMC Med ; 21(1): 233, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400857

RESUMO

BACKGROUND: Several COVID-19 vaccines are in widespread use in China. Few data exist on comparative immunogenicity of different COVID-19 vaccines given as booster doses. We aimed to assess neutralizing antibody levels raised by injectable and inhaled aerosolized recombinant adenovirus type 5 (Ad5)-vectored COVID-19 vaccine as a heterologous booster after an inactivated COVID-19 vaccine two-dose primary series. METHODS: Using an open-label prospective cohort design, we recruited 136 individuals who had received inactivated vaccine primary series followed by either injectable or inhaled Ad5-vectored vaccine and measured neutralizing antibody titers against ancestral SARS-CoV-2 virus and Omicron BA.1 and BA.5 variants. We also measured neutralizing antibody levels in convalescent sera from 39 patients who recovered from Omicron BA.2 infection. RESULTS: Six months after primary series vaccination, neutralizing immunity against ancestral SARS-CoV-2 was low and neutralizing immunity against Omicron (B.1.1.529) was lower. Boosting with Ad5-vectored vaccines induced a high immune response against ancestral SARS-CoV-2. Neutralizing responses against Omicron BA.5 were ≥ 80% lower than against ancestral SARS-CoV-2 in sera from prime-boost subjects and in convalescent sera from survivors of Omicron BA.2 infection. Inhaled aerosolized Ad5-vectored vaccine was associated with greater neutralizing titers than injectable Ad5-vectored vaccine against ancestral and Omicron SARS-CoV-2 variants. CONCLUSIONS: These findings support the current strategy of heterologous boosting with injectable or inhaled Ad5-vectored SARS-CoV-2 vaccination of individuals primed with inactivated COVID-19 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Estudos Prospectivos , SARS-CoV-2
14.
Small ; 19(42): e2302086, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37323104

RESUMO

The comparatively poor endurance of Ni-rich cathode materials restricts their application in high-energy lithium-ion batteries. A thorough understanding of the degradation characteristics of such materials under complex electrochemical aging protocols is required to further improve their reliability. In this work, the irreversible capacity losses of LiNi0.8 Mn0.1 Co0.1 O2 under different electrochemical aging protocols are quantitatively evaluated via a well-designed experiment. In addition, it is discovered that the origin of irreversible capacity losses is highly related to electrochemical cycling parameters and can be divided into two types. Type I is heterogeneous degradation caused by low C-rate or high upper cut-off voltage cycling and features abundant capacity loss during H2-H3 phase transition. Such capacity loss is attributed to the irreversible surface phase transition that limits the accessible state of charge during the H2-H3 phase transition stage via the pinning effect. Type II is fast charging/discharging induced homogeneous capacity loss that occurs consistently throughout the whole phase transition time. This degradation pathway shows a distinctive surface crystal structure, which is dominated by a bending layered structure rather than a typical rock-salt phase structure. This work offers detailed insight into the failure mechanism of Ni-rich cathodes and provides guidance on designing long-cycle life, high-reliability electrode materials.

15.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34117734

RESUMO

Recent studies have demonstrated that the excessive inflammatory response is an important factor of death in coronavirus disease 2019 (COVID-19) patients. In this study, we propose a deep representation on heterogeneous drug networks, termed DeepR2cov, to discover potential agents for treating the excessive inflammatory response in COVID-19 patients. This work explores the multi-hub characteristic of a heterogeneous drug network integrating eight unique networks. Inspired by the multi-hub characteristic, we design 3 billion special meta paths to train a deep representation model for learning low-dimensional vectors that integrate long-range structure dependency and complex semantic relation among network nodes. Based on the representation vectors and transcriptomics data, we predict 22 drugs that bind to tumor necrosis factor-α or interleukin-6, whose therapeutic associations with the inflammation storm in COVID-19 patients, and molecular binding model are further validated via data from PubMed publications, ongoing clinical trials and a docking program. In addition, the results on five biomedical applications suggest that DeepR2cov significantly outperforms five existing representation approaches. In summary, DeepR2cov is a powerful network representation approach and holds the potential to accelerate treatment of the inflammatory responses in COVID-19 patients. The source code and data can be downloaded from https://github.com/pengsl-lab/DeepR2cov.git.


Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Inflamação/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , COVID-19/complicações , COVID-19/genética , COVID-19/virologia , Biologia Computacional , Aprendizado Profundo , Humanos , Inflamação/complicações , Inflamação/genética , Inflamação/virologia , Redes Neurais de Computação , SARS-CoV-2/patogenicidade , Software , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
16.
Cardiovasc Drugs Ther ; 37(5): 891-904, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543792

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC)-derived exosomes play significant roles in ameliorating cardiac damage after myocardial ischemia-reperfusion (I/R) injury. Long non-coding RNA alpha-2-macroglobulin antisense RNA 1 (Lnc A2M-AS1) was found that might protect against myocardial I/R. However, whether Lnc A2M-AS1 delivery via MSC-derived exosomes could also regulate myocardial I/R injury remains unknown. METHODS: Exosomes were isolated by ultracentrifugation, and qualified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Hypoxia/reoxygenation (H/R) treatment in human cardiomyocytes was used to mimic the process of myocardial I/R in vitro. The viability and apoptosis of cardiomyocytes were detected using cell counting kit-8, flow cytometry, and Western blot assays. The contents of lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) were evaluated using corresponding commercial kits. The quantitative real-time polymerase chain reaction and Western blot were used to determine the expression levels of Lnc A2M-AS1, microRNA (miR)-556-5p, and X-linked inhibitor of apoptosis protein (XIAP). The binding interaction between miR-556-5p and Lnc A2M-AS1 or XIAP was confirmed by the dual-luciferase reporter, RIP and pull-down assays. RESULTS: Exosomes isolated from hMSCs (hMSCs-exo) attenuated H/R-induced apoptosis and oxidative stress in cardiomyocytes. Lnc A2M-AS1 was lowly expressed in AMI patients and H/R-induced cardiomyocytes. Besides, Lnc A2M-AS1 was detectable in hMSCs-exo, exosomes derived from Lnc A2M-AS1-transfected hMSCs weakened H/R-induced apoptosis and oxidative stress, and enhanced the protective action of hMSCs-exo on H/R-induced cardiomyocytes. Further mechanism analysis showed that Lnc A2M-AS1 acted as a sponge for miR-556-5p to increase XIAP expression level. Importantly, miR-556-5p overexpression or XIAP knockdown reversed the action of exosomal Lnc A2M-AS1 on H/R-induced cardiomyocytes. CONCLUSION: Lnc A2M-AS1 delivery via MSC-derived exosomes ameliorated H/R-induced cardiomyocyte apoptosis and oxidative stress via regulating miR-556-5p/XIAP, opening a new window into the pathogenesis of myocardial I/R injury.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Antissenso/metabolismo , Apoptose , Hipóxia , Estresse Oxidativo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Reperfusão , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , alfa-Macroglobulinas/metabolismo
17.
BMC Cardiovasc Disord ; 23(1): 60, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732689

RESUMO

BACKGROUND: Both bicuspid aortic valve (BAV) and bovine aortic arch (BA) are considered as markers of thoracic aortic disease (TAD). But the association between them is not yet clear. This study aimed to explore the potential association of BAV and BA with TAD. METHODS: The study involved 449 participants who underwent their first aortic valve replacement in Fuwai Hospital from June 2017 to March 2018. All patients underwent multidetector computed tomography and echocardiography before surgery. The clinical characteristics were recorded to analyze the association between BAV, BA, and TAD. The univariate and multivariate logistic regression analyses were applied to identify the risk factors for TAD. RESULTS: BA accounted for 79.8% of the arch variants and was the most common aortic arch branching variant. BAV was present in 52.6% of the patients with BA and 38.1% of the patients with normal arch (NA). Among the 185 patients in the BAV subgroup, 50 had BA and 135 had NA. No significant differences were found in BAV anatomical phenotype, aortopathy phenotype, and valve function between BA and NA. The multivariate analysis showed that the presence of BAV and male sex were the risk predictors of TAD. BA was not a risk factor for TAD in either univariate or multivariate analysis. CONCLUSIONS: The proportion of BAV in patients with BA was significantly higher than that of NA, but the BAV phenotype and aortopathy were not related to BA. BAV was a risk factor for TAD, whereas BA was not associated with TAD.


Assuntos
Doenças da Aorta , Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Masculino , Humanos , Doença da Válvula Aórtica Bicúspide/complicações , Aorta Torácica/diagnóstico por imagem , Doenças das Valvas Cardíacas/diagnóstico por imagem , Doenças das Valvas Cardíacas/epidemiologia , Doenças das Valvas Cardíacas/complicações , Valva Aórtica/cirurgia , Doenças da Aorta/complicações
18.
Ecotoxicol Environ Saf ; 249: 114449, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321668

RESUMO

Herein, a graphene oxide (GO)-based fluorescence aptasensor was developed for the sensitive and selective detection of chloramphenicol (CAP), based on exonuclease III (Exo III)-assisted target recycling and Nb.BbvCI-driven DNA walker cascade amplification. Interactions between CAP, hairpin1(HP1), hairpin2 (HP2), and 3'-amino modified hairpin3 (HP3) labeled with carboxyfluorescein (FAM) and covalently coupled to GO enabled efficient CAP detection. CAP was quantitatively assayed by measuring fluorescence at excitation/emission wavelengths of 480/514 nm, resulting from the accumulation of released FAM. A good linear range of 1 fM to 1 nM and a limit of detection (LOD) of 0.875 fM (signal-to-noise (S/N)= 3) were achieved. This aptasensor can distinguish the CAP from interference antibiotics with good specificity and selectivity, even if the concentration of the interfering substance is ten-fold higher than the target concentration. Moreover, the developed fluorescence aptasensor was successfully applied for the detection of CAP in spiked milk and honey samples. Thus, this method is potentially applicable for assaying CAP in foods and provides a promising strategy for the development of fluorescence aptasensors for environmental sample analysis.


Assuntos
Técnicas Biossensoriais , Exodesoxirribonucleases , Grafite , Mel , Cloranfenicol/análise , Mel/análise , Nióbio , Limite de Detecção , DNA , Óxidos , Técnicas Biossensoriais/métodos
19.
Cardiol Young ; 33(12): 2651-2653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37622326

RESUMO

The normal anatomical course of right upper lobe pulmonary vein involves drainage anteriorly to the pulmonary artery, ultimately reaching the left atrium. However, anomalies can occur with the most common variation involving the convergence of the right upper lobe pulmonary vein with the superior vena cava. In a rare pulmonary vascular malformation, the anomalous right upper lobe pulmonary vein takes a path between the right pulmonary artery and right main bronchus [1]. During a clinical consultation, a patient presented in our hospital with this specific anomalous right upper lobe pulmonary vein, along with an atrial septal defect and a patent ductus arteriosus. As a consequence of this aberrant positioning, the right upper lobe pulmonary vein was compressed between the pulmonary artery and trachea, leading to pulmonary vein obstruction. Thus, a successful pulmonary vein replantation was performed to correct the congenital malformation.


Assuntos
Veias Pulmonares , Malformações Vasculares , Humanos , Veias Pulmonares/cirurgia , Veias Pulmonares/anormalidades , Veia Cava Superior/anormalidades , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Traqueia/diagnóstico por imagem , Traqueia/cirurgia , Malformações Vasculares/complicações , Malformações Vasculares/diagnóstico , Malformações Vasculares/cirurgia
20.
Perfusion ; : 2676591231163270, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921566

RESUMO

BACKGROUND: Myocardial protection is essential in cardiac surgery with cardiopulmonary bypass The Del Nido cardioplegia which was initially used in pediatric cardiac surgery, has been increasingly used in adult cardiac surgery recently. However, no literature has reported the efficacy of DNC in hypertrophic obstructive cardiomyopathy. METHODS: This retrospective study involved elective patients who underwent extended surgical myectomy with or without concomitant cardiac surgical procedures between September 2017 and June 2022. Patients were distributed into two groups, the DNC and the CBC group. The primary outcome was high-sensitivity cardiac troponin I (hs-TnI) and creatine kinase-MB (CK-MB) levels at the 0, 1, and 2 postoperative days. The secondary outcomes contained: intraoperative LVEF, return to spontaneous rhythm; postoperative myocardial infarction, worsening or deteriorating of EF, mechanical circulatory support; new-onset atrial fibrillation; mechanical ventilation duration; intensive care unit hours; in-hospital days. RESULTS: Fifty-nine patients were included and divided into the CBC (n = 15) and the DNC group (n = 44). There was no statistical difference in patients' demographics and preoperative parameters between the two groups. No in-hospital mortality. The total cardioplegia volume [21.93(18.36,26.07) vs. 25.68(23.17,37.12), p = 0.012] and infusion times [1(1,1) vs. 2(2,3), p = 0.000] were less and the incidence of return to spontaneous rhythm after declamping was higher in the DNC group [97.7% vs. 73.3%, p = 0.013]. Postoperative hs-TnI and CK-MB levels were comparable between the two groups. A longer DNC infusion interval was associated with higher levels of CK-MB on postoperative day 1 and day 2 (p = 0.009 and p = 0.011, respectively). CONCLUSIONS: The use of DNC in extended surgical myectomy procedure was as safe and effective as CBC. However, DNC infusion interval over 60 minutes was associated with increased postoperative CK-MB levels.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa